Wavelet-Based Digital Watermarking Using Level-Adaptive Thresholding

레벨 적응적 이치화를 이용한 웨이블릿 기반의 디지털 워터마킹

  • Kim, Jong-Ryul (Department of Computer Science and Engineering, Hanyang University) ;
  • Mun, Young-Shik (Department of Computer Science and Engineering, Hanyang University)
  • 김종열 (漢陽大學敎 電子計算學科) ;
  • 문영식 (漢陽大學敎 電子計算學科)
  • Published : 2000.01.01

Abstract

In this paper, a new digital watermarking algorithm using wavelet transform is proposed. Wavelet transform is widely used for image processing, because of its multiresolution characteristic which conforms to the principles of the human visual system(HVS). It is also very efficient for localizing images in the spatial and frequency domain. Since wavelet coefficients can be characterized by the gaussian distribution, the proposed algorithm uses a gaussian distributed random vector as the watermark in order to achieve invisibility and robustness. After the original image is transformed using DWT(Discrete Wavelet Transform), the coefficients of all subbands including LL subband are utilized to equally embed the watermark to the whole image. To select perceptually significant coefficients for each subband, we use level-adaptive thresholding. The watermark is embedded to the selected coeffocoents, using different scale factors according to the wavelet characteristics. In the process of watermark detection, the similarity between the original watermark and the extracted watermark is calculated by using vector projection method. We analyze the performance of the proposed algorithm, compared with other transform-domain watermarking methods. The experimental results tested on various images show that the proposed watermark is less visible to human eyes and more robust to image compressions, image processings, geometric transformations and various noises, than the existing methods.

본 논문에서는 웨이블릿 변환을 이용한 새로운 디지털 워터마킹 방법을 제안한다. 웨이블릿 변환은 인간의 시각 구조와 상당히 유사한 다중해상도 특성을 지니고 있을 뿐 아니라, 영상을 공간 영역과 주파수 영역에 효과적으로 국부화 시키는 특성을 지니고 있기 때문에 영상처리에서 널리 연구되고 있는 방법이다. 웨이블릿 변환을 거친 계수들은 일반적으로 가우시안 분포를 따른다고 알려져 있기 때문에 제안한 방법에서는 비가시성과 견고함을 위해서 워터마크로서 가우시안 분포를 가지는 랜덤 벡터를 사용한다. 워터마크 삽입 과정에서는 워터마크가 영상 전체에 삽입될 수 있도록 하기 위해서 LL 부대역을 포함한 모든 부대역을 사용하고, 각 부대역에 대하여 레벨 적응적 이치화를 통해 시각적으로 중요한 웨이블릿 계수를 선택한다. 또한, 선택된 계수에 대하여 웨이블릿 특성에 따라서 각각 다른 가중치를 가지고 워터마크를 삽입한다. 워터마크 검출 과정에서는 벡터투영 방법을 사용하여 추출된 워터마크와 원래의 워터마크 사이의 유사도를 계산한다. 제안한 방법을 여러 가지 영상에 워터마킹해 본 결과, 워터마킹된 영상이 기존에 제안된 방법보다 시각적으로 손상이 없으면서, 여러 가지 압축, 영상처리, 기하학적 변환, 잡음 등에 강한 것을 확인하였다.

Keywords

References

  1. M.D. Swanson, M. Kobayashi, and A. Tewfik, 'Multimedia Data-Embedding and Watermarking Technologies,' Proc. of IEEE, vol. 86, no. 6, pp. 1064-1097, 1998. https://doi.org/10.1109/5.687830
  2. M.D. Swanson, B. Zhu, and A. Tewfik, 'Data Hiding for Video in Video and Other Applications,' IEEE Int. Conf. on Image Processing, vol. 3, pp.211-214, 1997
  3. I. Cox, J. Kilian, T. Leighton and T. Shamoon, 'Secure Spread Spectrum Watermarking for Multimedia,' IEEE Transactions on Image Processing, Vol. 6, pp. 1673-1687, Dec. 1997 https://doi.org/10.1109/83.650120
  4. I. Pitas, 'A Method for Signature Casting on Digital Image,' IEEE Int. Conf. on Image Processing, vol. 3, pp. 219-222, 1996 https://doi.org/10.1109/ICIP.1996.560422
  5. C. F. Osborne, R. G. Schyndel and A. Z. Tirkel, 'A Digital Watermarking,' IEEE Int. Conf. on Image Processing, vol. 2, pp. 86-90, 1994
  6. W. Bender, D. Gruhl and N. Morimoto 'Techniques for Data Hiding,' IBM Syst. J., vol. 35, pp. 313-336, 1995
  7. I. Pitas, N, Nikolaidas 'Copyright Protection of Images Using Robust Signature,' Proc. of IEEE International Conference on Acoustics, Speech & Signal Processing, pp.2168-2171, 1996 https://doi.org/10.1109/ICASSP.1996.545849
  8. J. Piva, M. Barni, F. Bartolini and V. Cappellini, 'DCT-based Watermarking Resorting to the Uncorrupted Original Image,' IEEE Int. Conf. on Image Processing, vol. 1, pp.520-523, 1997 https://doi.org/10.1109/ICIP.1997.647964
  9. X. G. Xia and C. G. Boncelet and G. R. Arce, 'A Multiresolution Watermark for Digital Images,' Proc. of IEEE ICIP, Vol.3, pp.548-551, 1997 https://doi.org/10.1109/ICIP.1997.647971
  10. D. Kundur, D. Hatzinakos, 'Digital Watermarking Using Multiresolution Wavelet Decomposition,' Proc. of IEEE International Conference on Acoustics, Speech & Signal Processing, pp. 1647-1650, 1998 https://doi.org/10.1109/ICASSP.1998.678149
  11. D. Kundur, D. Hatzinakos, 'Digital Watermarking Based on Multiresolution Wavelet Data Fusion,' IEEE Int. Conf. on Image Processing, vol. 1, pp.544-547, 1997
  12. S. Mallat, 'Multi-Frequency Channel Decomposition of Images Wavelets Models,' IEEE Trans. on Acoustic Speech and Signal Processing, vol. 37, no. 10, pp.2091-2110, 1990
  13. M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, 'Image coding using the wavelet transform,' IEEE Trans. Image Processing, pp. 205-220, Apr. 1992 https://doi.org/10.1109/83.136597
  14. M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, prentice hall, 1995
  15. A. B. Watson, G. Y. Yang, J. A. Solomon, and Villasenor, 'Visibility of Wavelet Quantization Noise,' IEEE Trans. on Image Processing, vol. 6, no. 8, pp. 1164-1175, 1997 https://doi.org/10.1109/83.605413
  16. S. Mallat, S. Zhong, 'Characterization of Signals from Multiscale Edges,' IEEE Trans. on PAMI, vol. 14, no. 7, pp.674-693, 1992 https://doi.org/10.1109/34.142909