Spectrophotometric Determination of Nickel (Ⅱ) in Tween80 Micellar Medium

Tween80 미셀 용액에서 Ni(Ⅱ)의 분광광도법 정량

  • 이승권 (수원대학교 자연과학대학 화학과) ;
  • 최희선 (수원대학교 자연과학대학 화학과)
  • Published : 20000600

Abstract

We have studied on the determination of Ni(II) using APDC as a complexing agent in Tween80 micellar medium. The absorption spectrum of Ni(PDC)$_2$ complex in Tween80 medium was better defined and more sensitive than that in chloroform Ni(PDC)$_2$ complex was very stable at pH 7.0 and up to 100 minutes, and could be quantitatively chelated when APDC was added to over 10 times moles of Ni(II). The optimum concentration of Tween80 was 0.1%. The calibration curve of Ni(PDC)$_2$ complex with good linearity(R$^2$=0.9955) was obtained in 0.1% Tween80 medium. The detection limit and the determination limit were 0.09 ${\mu}g$/mL and 0.28 ${\mu}g$/mL, respectively. This technique was applied to the analysis of Suwon stream water samples, and about l00% of recoveries were obtained from the spiked samples. Although the formation of Ni(PDC)$_2$ complex was interfered by various metal ions, this technique could be applied to the practical determination of Ni(II).

Tween80 미셀용액에서 착화제로서 APDC틀 이용하여 Ni(II)를 정량하는 방법에 대해 연구하였다. Ni(PDC)$_2$ 착물의 홉수 스펙트럼 chloroform에서 보다는 Tween80에서 더 좋은 모양과 더 좋은 감도를 보여 주었다. Ni(PDC)$_2$ 착물은 pH 7.0에서 그리고 100분 정도까지 매우 안정하였으며, APDC를 Ni(II)의 몰수의 10배 이상 넣어 주면 정량적으로 착물이 형성되었다. Tween80의 농도는 0,1%가 적절하였고,0.1% Tween80 용액에서 Ni(PDC)$_2$ 착물의 검정곡선은 좋은 직선성(R2=0.9955)을 보여주었다. 이 분석법의 검출한계와 정량한계는 각각 0.09 ${\mu}g$/mL와 0.28${\mu}g$/mL이었으며, 강물시료에 적용한 회수율은 100% 보다 조금 크게 나타났다. 비록 여러 금속이온들이 방해를 하지만, 실제시료에 들어있는 Ni(II)을 정량하는데 이용할 수 있을 것이다.

Keywords

References

  1. Bull. Korean Chem. Soc. v.19 no.50 Kim, Y. S.;Jung, Y. J.;Choi, H. S.
  2. Anal. Chim. Acta. v.156 no.159 Tao, H.;Miyazaki, A.;Bansho, K.
  3. Anal. Chim. v.54 no.2536 Lo, J. M.;Yu, J. C.;Hutchison, F. I.;Wai, C. M.
  4. Talanta v.33 no.255 Diaz Garcia, M. E.;Sanz Medel, A.
  5. Anal. Chem. v.58 no.1444 Hayashi, K.;Sasaki, Y.;Tagashira, S.;Kosaka, E.
  6. Anal. Chem. v.66 no.2752 Paradkar, R. P.;Williams, R. R.
  7. Analyst v.120 no.225 San Andres, M. P.;Marina, M. L.;Vera, S.
  8. Bull. Chem. Soc. Jpn. v.65 no.286 Tagashira, S.;Onoue, K.;Murakami, Y.;Sasaki, Y.
  9. Anal. Chem. v.69 no.2688 Vaidya, B.;Porter, M. D.
  10. Microchem. J. v.26 no.262 Hausenblesova, Z.;Namkova, I.;Suk, V.
  11. Microchem. J. v.26 no.288 Uesugi, K.;Miyawaki, M.
  12. Talanta v.28 no.419 Xi-Wen, H.;Poe, D.
  13. Anal. Chem. v.54 no.59 Callahan, J. H.;Kook, K. D.
  14. Analyst v.109 no.35 Jarosz, M.;Marczenko, Z.
  15. Surfactant Science Series v.1 Becher, P.;Schick, M. K. (ed.)
  16. Anal. Chem. v.64 no.2138 Okada, T.
  17. Talanta v.16 no.1099 Aspila, K. I.;Sastri, V. S.;Chakrabarti, C. L.
  18. Talanta v.42 no.737 Esteve-Romero, J. S.;Monferrer-Pons, LI;Ramis-Ramos, G.;Garcia-Alvarez-Coque, M. C.
  19. Surfactant Science Series v.1 Becher, P.;Schick, M. K.(ed.)
  20. Analytical Science and Technology v.8 no.321 Lee, J. S.;Choi, J. M.;Choi, H. S.;Kim, Y. S.
  21. Anal. Chem. v.46 no.1966 Everson, R. J.;Parker, H. E.
  22. Principles of Instrumental Analysis(5th ed.) Skoog, D. A.;Holler, F. J.;Nieman, T. A.