Cyclization Reaction of N-Aroyl- N^{\prime}-(2-hydroxyethyl)ureas: One-Pot Synthesis of 1-Aroyl-2-imidazolidinones

Tack Hyeon Kim,* Dong Ryun Oh, and Jac Young So
Faculty of Applied Chemistry, Chomam Vational Unversitu. Swangu 500-757, Sorea
Recened May 16, 2000

Cyclic ureas have recently gained much interest as pharmaceuticals for human immunodeficiency virus (HIV) protcase inhibitors ${ }^{1}$ and $5-\mathrm{HT}_{3}$ receptor antagonists. ${ }^{2}$ In addition. 5 - membered cyelic ureas. 2-imidazolidinones. are also used as useful chiral ausiliaries ${ }^{3}$ in highly diastercoselective alkylation. aldol. and Diels-Alder reactions. Several synthetic routes to 2 -imidazolidinones include the cyclization reaction of 1.2 -diamine with phosgene. ${ }^{+}$phosgene derivatives. ${ }^{2}$ dialkyl carbonate. ${ }^{5}$ carbonyl sulfide. ${ }^{6}$ and carbonyl selenide ${ }^{7}$ and these methods cause the polymerization as a side reaction. ${ }^{\text {B }}$ Recently. we reported a synthetic method for 2-imidazolidinones from 1.2 -aminoalcohol by onc-pot reaction of N-(2-hydroxyethyl)ureas with TsCl and $t-\mathrm{BuOK}$ without using phosgene gas (Scheme 1). ${ }^{9} \mathrm{~N}$-(2-Hydroxychyl)ureas 1 were derived from 1.2-aminoalcohols and phenyl isocyanate. In this paper we examine another nucleophile such as aroylureas for this one-pot reaction. Aroylureas 3 can conceivably proceed through mild nucleophilic attack upon the tosylate intermediate in the presence of t - BuOK either by the nitrogen to give the 2 -imidazolidinone 4 or by the onygen atom to provide 2 -oxazoline 5 . However, we expected that the increased acidity of iminodicarboyl group relative to phenylureas might favor the formation of 2-imidazolidinone.

Scheme 1

3

4
Scheme 2

Aroylureas 3 were readily prepared from the reaction of 1.2-aminoalcohols with benzoyl isocyanate or 2.4 -dichlorobenzoyl isocyanate. ${ }^{\text {le }}$ The next step was to achiese ring closure by activating the primary hydroxy group wia a transfer activation ${ }^{\text {sill }}$ using TsCl and t - BuOK (Scheme 2). The cyclization of a variety of substrates $3 \mathrm{a}-3 \mathrm{f}$ was examined (Table 1). Contrary to phenylurcas 1. aroy lureas $\mathbf{3 b}$ and 3 e prepared from N-unsubstituted aminoalcohols gave the unexpected mixture of both N - and O-alkylated products in low yiclds. In comparison to $\mathbf{3 b}$. however. aroylurea 3 e afforded more N-alkylated product te (entries b and c). because an increase in the $\mathrm{N}-\mathrm{H}$ acidity by changing the substitution pattern in the bezene ring was anticipated to increase the N - to O-alkylation ratio. With 3a. 3c. and 3d prepared from N-substituted aminoalcohols. as expected. N cyclization to 2 -imidazolidinones was mainly observed with trace amount of the O-cyclized products regardless of the substitution pattern in the bezene ring. Aroylurea 3f prepared from 2 -aminoethanol did not undergo cyclization reaction upon this condition. The remarkable N-cyclization selectivity in aroylureas with $\alpha-N$-alkyl group may occur through a buttressing effect of $\alpha-N$-alkyl group in the cyclization. ${ }^{12}$ The present 2 -imidazolidinones 4 can be deacylated and alkylated to provide $N . N^{\prime}$-disubstituted cyclic ureas, overcoming the general difficulties associated with the synthesis of tetrasubstituted ureas. ${ }^{1.3}$

Experimental Section

General. ${ }^{\text {J }} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded

Table 1. Preparations of Aroylureas 3 and 1-Aroyl-2-imidazolidinoncs 4

Fintry	R^{1}	R^{2}	R^{3}	R^{+}	$\begin{gathered} \text { yield (\%) } \\ \text { of } 3^{x} \end{gathered}$	mp ol 3	$\begin{gathered} \text { yichl (\%) } \\ \text { of } 4 \end{gathered}$
a	F.t	H	H	Ph	85	158-160	82
b	H	Me	Me	Ph	95^{-6}	122-124	$11(33 / 67)$
c	F.t	H	H	$2,4-\mathrm{Cl}_{2} \mathrm{Ph}$	92	124-126	94
d	Me	H	H	$2,4-\mathrm{Cl}_{2} \mathrm{Ph}$	8.3	153-155	81
e	H	Me	Me	$2,4-\mathrm{Cl}_{2} \mathrm{Ph}$	84	20.205	$48(70 / 30)^{r}$
f	H	H	H	$2,4-\mathrm{Cl}_{2} \mathrm{Ph}$	8.3	126-128	ne ${ }^{\prime \prime}$

[^0]using $300 \mathrm{MH} \neq$ and $75 \mathrm{MH} z$ NMR spectrometer: chemical shifts are reported in ppm using TMS as internal standard. Melting points were determined on a capillary apparatus and uncorrected. Analytical TLC was performed on 0.25 mm precoated silica gel plates. Flash column chromatography was carricd out with 230 - 400 mesh silica gel.

General Procedure for Preparation of A roylureas 3.
A solution of aroyl isocyanate (2.4 mmol) in tetrahydrofuran (5 mL) was added over 10 min to a solution of 2 aminocthanol (2.4 mmol) in tetrahy drofuran (15 mL) cooled in an ice bath. The reaction mixture was stirred for 30 min and evaporated. The crude products except 3b were purified by the recrystallization in n-hexane/small amount of acctone or cthanol.

1-Benzoyl-3-ethyl-3-(2-hydroxyethyl)urea (3a). 'H NMR $\left(300 \mathrm{MH} \nsim . \mathrm{CDCl}_{3}\right) \delta 7.86-7.83(\mathrm{~m} .2 \mathrm{H}) .7 .50-7.45(\mathrm{~m} . \mathrm{lH})$. $7.40-7.35(\mathrm{~m} .2 \mathrm{H}) .3 .90(1.2 \mathrm{H} . J=4.3 \mathrm{H} \%) .3 .47(\mathrm{t} .2 \mathrm{H} . J=$ $4.3 \mathrm{H} \delta) .3 .33(\mathrm{q} .2 \mathrm{H} . J=7.2 \mathrm{H} \%) .1 .16(1.3 \mathrm{H} . J=7.2 \mathrm{H} \%)$.

1-Benzoyl-3-[(2-hydroxy-1,1-dimethyl)ethylJurea (3b). $R_{f}=0.3$ (ethyl acetate/n-hexane $1: 1$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \%$. CDCl_{3}) $\delta 9.04$ (bs. 2H). 7.91-7.89 (m. 2H). 7.64-7.58 (m. $1 \mathrm{H}) .7 .54-7.48(\mathrm{~m} .2 \mathrm{H}) .3 .88(\mathrm{~s} .1 \mathrm{H}) .3 .68(\mathrm{~d} .2 \mathrm{H} . J=6.1$ $\mathrm{H} \%$). 1.40 (s. 6 H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . . \mathrm{CDCl}_{3}$) $\delta 168.7$. 154.5. 133.2. 132.3. 128.9. 127.9. 70.4. 55.6. 24.5.

1-(2,+-Dichlorobenzoyl)-3-ethyl-3-(2-hydroxyethyl)urea (3c). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \approx . \mathrm{CDCl}_{3}$) $\delta 7.43$ (d. $1 \mathrm{H} . ~ J=8.3 \mathrm{H} \%$). $7.37(\mathrm{~d} .1 \mathrm{H} . J=1.9 \mathrm{H} \%) .7 .29(\mathrm{dd} .1 \mathrm{H} . J=1.9 .8 .3 \mathrm{H} \%) .3 .87-$ $3.84(\mathrm{~m} .2 \mathrm{H}) .3 .53-3.49(\mathrm{~m} .2 \mathrm{H}) .3 .34(\mathrm{q} .2 \mathrm{H} . J=6.9 \mathrm{H} \%$). $1.16(\mathrm{t} .3 \mathrm{H} . J=7.2 \mathrm{H} \%):{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) δ 166.6. 153.3.137.5. 131.9. 130.2. 129.6. 127.6. 127.3. 61.9. 49.1. 42.4. 12.8.

1-(2,4-Dichlorobenzoyl)-3-methỵl-3-(2-hydroxyethyl)urca (3d). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \approx . \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d} .1 \mathrm{H} . J=8.3 \mathrm{H} \%$). $7.39(\mathrm{~d} . \mathrm{lH} . J=2.0 \mathrm{H} \delta) .7 .30(\mathrm{dd} .1 \mathrm{H} . J=2.0 .8 .3 \mathrm{H} /) \cdot 3.88-$ $3.85(\mathrm{~m} .2 \mathrm{H}) .3 .55-3.52(\mathrm{~m} .2 \mathrm{H}) .2 .98(\mathrm{~s} .3 \mathrm{H})$.

1-(2,4-Dichlorobenzoyl)-3-[(2-hyylroxy-1,1-dimethỵ)cthyl]urea (3c). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not . . \mathrm{CDCl}_{3}$) $\delta 9.19$ (bs. $1 \mathrm{H}) .8 .79(\mathrm{~s} .1 \mathrm{H}) .7 .57(\mathrm{~d} .1 \mathrm{H} . J=8.3 \mathrm{H} \mathrm{f}) .7 .48(\mathrm{~d} .1 \mathrm{H} . J=$ $1.9 \mathrm{~Hz}) .7 .36(\mathrm{dd}, 1 \mathrm{H} . J=1.9 .8 .3 \mathrm{~Hz}) .3 .61(\mathrm{~s} .2 \mathrm{H}) .1 .33(\mathrm{~s}$. $6 \mathrm{H}) .{ }^{1.3} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.6. 153.1. 138.4 . 132.0. 131.4, 130.9. 130.6. 127.7, 70.2. 55.8. 24.5 .

1-(2,+-Dichlorobenzoyl)-3-(2-hydroxyethyl)urea (3f). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64$ (bs, 1 H). 7.62 (d. $1 \mathrm{H} . J=$ $8.4 \mathrm{~Hz}) .7 .48(\mathrm{~d} .1 \mathrm{H}, ~ J=2.0 \mathrm{~Hz}) .7 .36(\mathrm{dd}, 1 \mathrm{H}, ~ J=2.0 .8 .4$ Hz). 3.82-3.78 (m. 2H), 3.55-3.49 (m. 2H): ${ }^{1.3} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 166.2 .153 .8 .138 .5,1319.131 .1,130.6$. 127.8. 62.2. 42.8. 30.9

General Procedure for Intramolecular Cyclization of 3.

To a stirred suspension of potassium t-butoxide (0.4 g .3 .6 $\mathrm{mmol})$ and aroylurea (1.5 mmol) in tetrahydrofuran (20 mL) under the nitrogen in an ice bath was added a solution of p toluenesulfonyl chloride (0.34 g .1 .8 mmol) in tetralydrofuran (5 mL) dropwise using a syringe. The reaction mixture was stirred in an ice bath for 30 min . quenched with water (20 mL), and extracted with ether ($25 \mathrm{~mL} \times 2$). The crude product was purified by flash column chromatography.

1-Benzoyl-3-ethyl-2-imidazolidinone (+a). ${ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MH} \neq \mathrm{CDCl}_{3}\right) \delta 7.86-7.83(\mathrm{~m}, 2 \mathrm{H}) .7 .50-7.45(\mathrm{~m}, 1 \mathrm{H}) .7 .4(\mathrm{)}-$ $7.35(\mathrm{~m} .2 \mathrm{H}) .3 .92-3.89(\mathrm{~m}, 2 \mathrm{H}) .3 .48-3.44(\mathrm{~m} .2 \mathrm{H}) .3 .32(\mathrm{q}$. $2 \mathrm{H} . J=7.2 \mathrm{~Hz}$). 1.16 (t. $3 \mathrm{H} . J=7.2 \mathrm{H} \%$): HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} 218.1055$, found 218.1045.

1-Benzoyl-4,+dimethyl-2-imidazolidinone (4b). $1 \mathrm{I} \%$ y icld: $R_{f}=0.5$ (acetonc/chloroform 3:10): mp 164-166 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not . . \mathrm{CDCl}_{3}$) $\delta 7.62-7.58(\mathrm{~m} .2 \mathrm{H}) .7 .47-7.4(\mathrm{~m}$. $1 \mathrm{H}) .7 .40-7.35(\mathrm{~m} .2 \mathrm{H}) .6 .00(\mathrm{bs} .1 \mathrm{H}) .3 .75(\mathrm{~s} .2 \mathrm{H}) .1 .29(\mathrm{~s}$. 6 H): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \neq . \mathrm{CDCl}_{3}$) $\delta 170.5 .155 .0 .134 .6$. 131.2, 128.6. 127.4. 56.3, 51.2. 28.3: MS (EI) $\mathrm{m} / \mathrm{c} 219$ (M+1, 56). 218 (M, 95). $203(87) .190(66) .175(67) .113$ (93). 105 (100). 77 (93). The starting material 3 b was recoscred in 12% yicld. $R_{f}=0.4$ (acctone/chloroform $3: 10$).

4,4-Dimethyl-4,5-dihydro-N-benzoyl-2-oxazolamine (5b) 42% yicld: $R_{f}=0.4$ (ethyl acctate/n-hexanc $1: 1$): mp 79-81 ${ }^{\circ} \mathrm{C} .{ }^{\mathrm{H}} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MH} \% \mathrm{CDCl}_{3}\right) \delta 9.62$ (bs. IH). 8.25-8.23 (m. 2H). $7.49-7.38(\mathrm{~m} .3 \mathrm{H}) .4 .15(\mathrm{~s} .2 \mathrm{H}) .1 .42(\mathrm{~s} .6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta 178.8$. 166,0. 136.7. 131.9. 129.4. 128.2.76.7. 58.4. 27.3: MS (EI) m/e 218 (M. 40). 217 (94). $141(96) .105(100) .77(88)$.

1-(2,4-Dichlorobenzoyl)-3-ethyl-2-imidazolidinone (tc) ${ }^{1} \mathrm{H}$ NMR (300) MȞ. CDCl_{3}) $\delta 7.4(0-7.22(\mathrm{~m} .3 \mathrm{H})$. 4.07-4,01 (m. 2H). 3.55-3.53 (m. 2H). 3.31 (q. $2 \mathrm{H} . J=7.2 \mathrm{H} \%$). 1.174 (1. $3 \mathrm{H} . J=7.2 \mathrm{H} \%$): HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 286.0276$. found 286,0257 .

1-(2,4-Dichlorobenzoyl)-3-methyl-2-imidazolidinone (4d). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MH} \not . \mathrm{CDCl}_{3}$) $\delta 7.4(0-7.21$ (m. 3 H). $4.06-4.00$ (m. 2H). $3.55-3.50(\mathrm{~m} .2 \mathrm{H}) .2 .84$ (s. 3H): HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} 272.01193$, found 272.01199 .

1-(2,4-Dichlorobenzoyl)-4,4-dimethỵl-2-imidazolidinone (4c). ${ }^{1} \mathrm{H} N \mathrm{NMR}\left(300 \mathrm{MH}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.2 \mathrm{I}(\mathrm{m} .3 \mathrm{H}) .3 .84$ (s. 2H). 1.42 (s. 6 H): HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ 286,0276. Found 286,0286.

Acknowledgment. Financial support from the Brain Korca 21 program of the Ministry of Education is gratefully acknowledged. Spectroscopic analyses were performed in the Korea Basic Science Institute.

References

1. (a) Lam, P. Y. S.: Jadhav, P. K.: Eyermani, C. J.: I Iodge. C. N.: Ru. Y.: Bacheler. L. T.: Meek. J. L.: Otto, M. J.: Rayner. M. M.: Wong. Y. N.: Chang, C-H.: Weher, P. C.: Tacksen, D. A. Shaper. T. R.: Frickson-Vitamen, S. Science 1994. 263, 380. (b) Wilkerson, W. W: Das, S: Cheatham. W. W. J. Aed. Chem. 1997, 10. 4079. (c) Patel, M: Bacheler, I.. T.: Rayner, M. M.: Cordova, B. C: Klabe, R. M.: Frickison-Vitanen, S: Seity, S. P. Bioorg. Med. Chem. Lett. 1998, 8. 823.
2. Heidempergher. F:: Pillan, A.: Pinciroli. V:: Vaghi. F: Arrigoni, C.: Bolis, G.: Caccia C.: Dho. L.: McArthur. R.: Varasi, M. J. Med. (hem. 1997, 10, 3369.
3. (a) (4R, $\bar{X})$ - 1.5 -Dimethyl-4-phenvl-2-midazolidinone: (Guillena. G.: Najera, C. Tetrahedrom: Asymmetry 1998. 9, 1125, and references cited therein. (h) (4))-4-(1-Methylethyl or phenymethyl)-1-phenyl-2-imidazolidinone: Taguehi, T, Shibuya, A: Sasaki, H.: Fndo, T.: Morikana, T.: Shiro, M. Tetrahedron: Asymmety 1994, 5, 1423, and references
cited thenein. (c) trans-4,5-Tetramethy lene-2-imidarolidinone: Davies, S. G.: Evans, G. B.: Mortlock, A. A. Tetrahedron: Aspmmety 1994, 5, 585. (d) Camphor-derived 2imidazolidinone: Palomo, C: Oiarbide, M.: Gonzalez, A. : Garcia, J. M.: Berree, F. Tetrahedon Letl. 1996, 37, 4565. (e) (4, 5)-4-Carboxylate-2-imidazolidinone: Kubota, 11.: Kubo, A.: Takahashi, M.: Shimizu, R.: Da-te, T:: Okamura, K.: Nunami, K. J. Org. (hem. 1995, 60, 6776.
4. (a) Birkoter, I... Kuhlhau, H. P.: Ritter, A. Chem. Ber: 1960, 93, 2810. (b) Hay ward, R. J.: Meth-Cohn, O. I. (hem. Soc., Perkin Trans. I 1975, 212 . (c) Madaren, J. A. Aust. J. (hem. 1977, 30, 455. (d) Kim, J-M.: Wilson T. E..: Nomman, T. H.: Schuld, P. G. Tetrohedron Lett. 1996. 37. 5309.
5. Takeda, K : Ogura, H. Sinh. Comm. 1982, I2, 21 .
6. Ulrich, II: Tucker, B.: Richter. R. J. Ofg. Chem. 1978, f., 1544.
7. Kondo, K.: Yokoyama, S.: Miyoshi, N.: Murai, S.: Sonoda, N. Angew: Chem, Inl. Ed. Engl, 1979. IS, 692.
8. Davies, S. (i.: Mortlock, A. A. Tetrahedon 1993, f9, 4419.
9. Kim, I. II.: Lee, G.- J. J. Org. Chem. 1999, 6t, 2941.
10. Procedure for the preparation of 2,4-dichlorobenzoyl isocyanate See: Weikert, R. I.: Bingham, Jr, S.: Emanuel, M. $\Lambda .:$ Fraser-Smith, E. B.: Loughhead, D) (i.: Nelson, P? H.: Poulton, A. I. . J. Med. (hom. 1991, 34, 1630.
11. For a general discussion of the transier of activation, see: (a)Sobolow, S. B. Sun T. Cooper, B. A. Tetrahedron Lett. 1998. 39, 5685 . (b) Гissenstat, M. A.: Weaver, J. D. Tetrahedron Lett. 1995, 36, 2029.
12. Park. K. H.: Kurth. M. I. Tetrahedron Lett. 1999, 40 , 5841.
13. Katritzky, A. R.: Pleynet, D. P. M.: Yang, B. J. Org. Chem. 1997, 62, 4155.

[^0]: ${ }^{n}$ Isolated sield by recrstallization. "Isolated sield by column chromatography: "The ratio of 2 -imidazolidimone 4 and 2 -ovazoline $\mathbf{5}$ was determined with ${ }^{1}$ I NMR data. "ne means mo cyclization reaction

