DOI QR코드

DOI QR Code

Solid-State $^{51}V$ NMR and Infrared Spectroscopic Study of Vanadium Oxide Supported on $TiO_2-ZrO_2$


Abstract

Vanadium oxide catalyst supported on TiO2-ZrO2 has been prepared by adding Ti(OH)4-Zr(OH)4 powder to an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The char-acterization ofthe prepared catalysts was performed using solid-state 51V NMR and FTIR.In thecase ofcalci-nation temperature at 773 K, vanadium oxide was in a highly dispersed state for the samples containing low loading V2O5 below 25 wt %, but for samplescontaining high loading V2O5 equal to or above 25 wt %, vana-dium oxidewas well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2.The ZrV2O7 compound was formed through the reactionof V2O5 and ZrO2 at 773-973 K, where-as the V3Ti6O17 compound was formedthrough the reaction of V2O5 and TiO2 at 973-1073 K. The V3Ti6O17 compound decomposed to V2O5 and TiO2 at 1173 K, which were confirmed by FTIR and 51V NMR.

Keywords

References

  1. J. Chem. Soc., Faraday Trans. 1 v.79 Nakagawa, Y.;Ono, T.;Miyata, H.;Kubokawa, Y.
  2. J. Chem. Soc. Faraday Trans. 1 v.85 Miyata, H.;Kohno, M.;Ono, T.;Ohno, T.;Hatayama, F.
  3. Catal. Today v.49 Reddy, B. M.;Ganesh, I.;Chowdhury, B.
  4. Langmuir v.15 Lakshmi, L. J.;Ju, Z.;Alyea, E. C.
  5. J. Ind. Eng. Chem. v.5 Doh, I. J.;Pae, Y. I.;Sohn, J. R.
  6. Catal. Today v.1 Forzatti, P.;Tronoconi, E.;Busca, G.;Titarellp, P.
  7. J. Phys. Chem. v.91 Busca, G.;Elmi, A. S.;Forzatti, P.
  8. J. Chem. Soc., Chem. Commun. v.88 Centi, G.;Militerno, S.;Perathoner, S.;Riva, A.;Barambilla, G.
  9. Appl. Catal. B. v.1 Centi, G.;Perathoner, S.;Kartheuser, B.;Rohan, D.;Hoidnett, B. K.
  10. J. Catal. v.157 Matralis, H. M.;Ciardelli, M.;Ruwet, M.;Grange, P.
  11. J. Catal. v.156 Mastikhin, V. M.;Terskikh, V. V.;Lapina, O. B.;Filiminova, S. V.;Seidl, M.;Knovinger, H.
  12. Ind. Eng. Chem. Res. v.84 Elmi, A. S.;Tronoconi, E.;Cristiani, C.;Martin, J. P. G.;Forzatti, P.
  13. J. Chem. Soc., Faraday Trans. 1 v.83 Miyata, H.;Fujii, K.;Ono, T.;Kubokawa, Y.;Ohno, T.;Hatayama, F.
  14. J. Chem. Soc. Faraday Trans. 1 v.84 Cavani, F.;Centi, G.;Foresti, E.;Trifiro, F.
  15. J. Chem. Soc., Faraday Trans. v.87 Hayata, F.;Ohno, T.;Maruoka, T.;Miyata, H.
  16. Langmiur v.6 del Arco, M.;Holgado, M. J.;Martin, C.;Rives, V.
  17. J. Catal. v.130 Centi, G.;Pinelli, D.;Trifiro, F.;Ghoussoub, D.;Guelton, M.;Gengembre, L.
  18. J. Phys. Chem. v.87 Inomata, M.;Mori, K.;Miyamoto, A.;Murakami, Y.
  19. J. Chem. Soc., Faraday Trans. v.87 Scharf, U.;Schraml-Marth, M.;Wokaun, A.;Baiker, A.
  20. J. Mol. Catal. v.63 Miyata, H.;Kohno, M.;Ono, T.;Ohno, T.;Hatayama, F.
  21. Bull. Korean Chem. Soc. v.17 Sohn, J. R.;Park, M. Y.;Pae, Y. I.
  22. Bull. Korean Chem. Soc. v.19 Sohn, J. R.;Lee, M. H.;Doh, I. J.;Pae, Y. I.
  23. J. Phys. Chem. v.73 Kera, Y.;Hirota, K.
  24. J. Chem. Faraday Tran v.72 Cole, D. J.;Cullis, C. F.;Hucknall, D. J.
  25. Bull. Chem. Soc. Jpn. v.63 Hayashi, S.;Hayamizu, K.
  26. J. Chem. Soc., Faraday Trans. v.83 Mori, K.;Miyamoto, A.;Murakami, Y.
  27. J. Catal. v.119 Bjorklund, R. B.;Odenbrand, C. U. I.;Brandin, J. G. M.;Anderson, L. A. H.;Liedberg, B.
  28. J. Catal. v.159 Sohn, J. R.;Cho, S. G.;Pae, Y. I.;Hayashi, S.
  29. J. Catal. v.62 Inomata, M.;Miyamoto, A.;Marakami, Y.
  30. J. Catal. v.88 Highfield, J. G.;Moffat, J. B.
  31. J. Phys. Chem. v.84 Roozeboom, F.;Mittelmelijer- Hazeleger, M. C.;Moulijn, J. A.;Medema, J.;de Beer, U. H. J.;Gelling, P. J.
  32. J. Phys. Chem. v.93 Eckert, H.;Wachs, I. E.
  33. J. Phys. Chem. v.96 Reddy, B. M.;Reddy, E. P.;Srinivas, S. T.;Mastikhim, V. M.;Nosov, N. V.;Lapina, O. B.
  34. J. Phys. Chem. v.92 Le Costumer, L. R.;Taouk, B.;Le Meur, M.;Payen, E.;Guelton, M.;Grimblot, J.
  35. J. Phys. Chem. v.94 Narsimha, K.;Reddy, B. M.;Rao, P. K.;Mastikhin, V. M.
  36. Appl. Catal. v.63 Sobalik, Z.;Lapina, O. B.;Novgorodova, O. N.;Mastikhin, V. M.
  37. J. Phys. Chem. v.92 Satsuma, A.;Hattori, A.;Mizutani, K.;Furuta, A.;Miyamoto, A.;Hattor, T.;Murakami, Y.

Cited by

  1. Characterization of Vanadium Oxide Supported on Zirconia and Modified with MoO3 vol.24, pp.3, 2003, https://doi.org/10.5012/bkcs.2003.24.3.311
  2. Recent Advances on TiO 2 ‐ZrO 2 Mixed Oxides as Catalysts and Catalyst Supports vol.47, pp.2, 2000, https://doi.org/10.1081/cr-200057488
  3. Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activities for Acid Catalysis vol.28, pp.12, 2000, https://doi.org/10.5012/bkcs.2007.28.12.2459
  4. Colloidal Counterpart of the TiO2-Supported V2O5 System: A Case Study of Oxide-on-Oxide Deposition by Wet Chemical Techniques. Synthesis, Vanadium Speciation, and Gas- vol.117, pp.40, 2013, https://doi.org/10.1021/jp406518w