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We study the rheological properties of concentrated polymer solution and the melt under simple shear and elon-
gational flow using Brownian dvnamics simulation. [n order to describe the anisotropic molecular motion, we
modified the Giesekus™ mobility tensor by incorporating the finitely extensible non-linear elastic (FENE)
spring force into dumbbell model. To elucidate the nature of this model. our simulation results are compared
with the data of FENE-P ("P” stands for the Perterin) dumbbell model and experiments. While in steady state
both original FENE and FENE-P models exhibit a similar viscosity response, the growth of viscosity becomes
dissimilar as the anisotropy decreases and the flow rate increases. The steady state viscosity obtained from the
simmlation well describes the experiments including the shear-thinning behavior in shear flow and viscosity-
thinning behavior in elongational flow. But the growth of viscosity of original FENE dumbbell model cannot

describe the experimental results in both flow fields.

Introduction

The molecular motions in concentrated polymer solution
and the melt are complex because of the intermolecular
interactions between different chains. In recent vears. de
Gennes.’ Doi.” and Curtiss ¢f af.* have described the chain
motion in such a topologically interacting system. In order to
derive the theoretical formula. they assiumned that the mole-
cular motion in the direction of the chain contour might be
easier than the motion perpendicular to it. Giesekus® also
used the asswmption of anisotropic molecular motion in
order to derive the constitutive equation for polvimeric lig-
nids. One-mode simple Giesekus™ model well predicted the
steady state viscosity and the growth of shear viscosity.***
However. in elongational flow field. his simple meodel could
not show the characteristic behaviors of polymeric liguids
such as strain-hardening in transient state and viscosity-
thinning in stcady statc. To overcome the oversimplificd
onc-mode simple model. he introduced the relaxation-type
dependence of the mobility ™ on the configuration (ensor.

The same constitutive cquation of simple Gicsckus™ model
can be also derived in terms of the phasc-space kinctic
thcory® of polymeric liguids il we consider a polymer chain
as a Hookian dumbbcll which consists of two identical beads
connccted by a massless spring named connector veetor, The
Iimcar Hookcan spring force 1s rcalistic only for small defor-
mation from the cquilibrium. Whercas the dumbbell with
Hookcan spring is mfinitcly cxicnsible. real polymers can
certainly be extended (o their fully stretched length at most.
For large cxtension of a polvmer the Iimcar spring-force law
is a poor approximation. so it can be improved by introduc-
ing (thc FENE spring force.” Dumbbell models with FENE
spring force arc now widely used in numencal flow calcula-
tions: both n the classical approach via a closed constitutive
cquation® and in a new approach in which the polymeric
stress icnsors arc computed viae Brownian dvnamics (BD)

simulation.”

Wiest'" modified the Giesekus constitutive equation by
incorporating the finite extensibility of polymer chains into
the dumbbell kinetic theory. The modified constitutive equa-
tion quantitatively described the steady state viscosity in the
shear and elongational flow. but could not reproduce the
growth of viscosity in elongational flow. When he modified
the constitutive equation. he used the FENE-P'! spring force
in order to obtain an analytically more tractable constitutive
equation because no closed constitutive equation for the
polyimeric stress tensor exists and no simple analytical solu-
tions are possible for original FENE dumbbell model.

In this paper. we use the Brownian dynamics simulation
method to obtain the polymeric stress tensors for the original
FENE dumbbell model with the anisotropic mobility tensor.
We also derive the constitutive equation in simple form for
the FENE-P dumbbell model using the phase-space kinetics
thcory. From the Browwnian dynamics simulation. we obtain
the growth of and steady state viscosity for simple shear and
clongational flow. These results will be compared with those
of FENE-P dumbbcll model and cxperimental data.

Constitutive equation for the FENE-P dumbbell modcl

The diffusion cquation of confligurational distribution
function w(Q. H* for conncctor veclors @ =ry—r, of
amisotropic dumbbcells can be represented by
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where x1s the transpose of macroscopic velocity gradient. /ﬁﬂ
15 the Boltzmann constant. 71s the absollutc temperature. ¢
is the anisotropic mobility tensor. £ is a tensor for the
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anisotropic Brownian motion. and F© is the connector
force. In order to represent the anisotropic molecular motion.
we usc the anisotropic mobility tensor. g'l. suggesied by
Gicsckus™ in terms of the macroscopic quantity:
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where ¢is the friction cocfTicicnt of a bead. s a unit tensor.
¢ 1s an anisotropy paramcier. # 1§ the number density of
polymer molccules. and 7, is the stress tensor contributed
from polvmer molecules. I we assume ihe Brownian motion
is isotropic (£ = &). we can obtain the polymer contribu-
tion 1o the stress tensor of Kramers expression;

T, = nkg 18 - a{QF 3)

where the angular brackets indicaic an cnsemble average
overall Qusing w(Q. ).

Warner’ proposed the [lollowing original FENE spring
force:
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where H is the spring constant. {0 is the Iength of conncclor
vector. and (s 18 the maximum ¢xtensible spring Iength,
When this original spring force 1s applicd o Eq. (1). no
closed constitutive cquation for the polvmeric stress lensor
exists and no simple analytical solution is possible. There-
forc. we will cvaluate the average of the siress (ensor via
Brownian dynamics simulation.'>"" An analvtically morc
tractable dumbbell model which Icads to a closed constitu-
tive cquation can be oblained by replacing the conliguration-
dependent non-lincar factor in the FENE spring force with a
sclf~consistenly averaged (crm. The FENE-P ("P stands lor
Peterlin’' who introduced this idca) approximation for
FENE spring force is expressed as:

Fo - ___HO
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Using the FENE-P spring lorce. we obtain the closcd consti-
tutive cquation

(QS Q(ﬁl) (5)
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where ’I'r('r;) 15 the trace of the stress tensor in reduced
units. and the subscription (1) of Ay denotes upper convee-
DA
(k- A+A- K"y here D/
Dr is the material time derivative and & is the transposc of
k. This constitutive cquation 1s cquivalent to Eq. (8) of
Wicst"" il we express the parameter Z into reciprocal form.
In deriving Eq. (6). we used the reduced units: time £ = Ayt

T+ (ZT),,~04 T, T,} = (Z8),, Z

tive denvative of A: Ay =
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Ay =c/4H. length Q=1 FF=kgl!H. finilc cxicnsibility
paramcier b =HQy/kgl. and sircss tensor 7,= nkplT,",
Hereafter. we will express the physical quantitics in reduced

units without anv superscripts.

Brownian dynamics simulation for original FENE
dumbbell

When we assume the Brownian motion is isotropic (£
=6). Eq. (1) is cquivalent to the [to stochastic diffcrential
cquation (SDE) for a three-dimensional Markoy process
(43

—
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where ¢'=8 - . B- B!'=g L (W(ry=0_and {W(1)
W) =minh. 1) 6.

The Wiener process W is the 3-dimensional Gaussian pro-
cess of which first moment is zero vector and second
moment is a diagonal matrix whose element is minimum
time between two Wiener processes. The first term of nght
side of Eq. (7) is that of the deterministic ordinary differen-
tial equation (ODE). and referred as drift term. The Brown-
ian motion of dumbbell causes Wiener process that
distingnishes the SDE from the ODE, so the second term is
referred as diffusion term. Since the non-linear Eq. (7) can-
not be solved analytically. we have to integrate it numeri-
cally. The simplest numerical method to integrate Eq. (7) is
the Euler scheme.'® For a given timestep Af. the Euler
scheme is given by

QU +An =0+
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where the increment AW=W(r + AH)—W(1) is an indepen-
dent 3-dimensional Gaussian process that has the same sta-
tistical propertics in Eq. (7).

During the simulation according to Eq. (8). there is a cer-
tam probability that thc conncctor veclor cxcceds (he
allowed spring cxtension for FENE dumbbell model. To
avoid such unphysical range. we use (he prediclor-corrector
Euler method.™ At low flow rate. the diffusion tcrm infro-
duces the fluctuation into the cnsemble averaged stress ten-
sor. which appears as unwanted “noise”. This noisc severely
hmits our ability 10 calculaic low flow rale viscosily. where
the signal to noise ratio becomes very small. This undesir-
able noisc can be reduced by variance reduction method ™
we run a parallel cquilibrium simulation (L.e. x=0) from the
samg nitial configurations and with the same stochastic dis-
placements (fe. W= W). then we obtain the vanance
reduced stress (ensor by subtracting equilibrium values from
the stress tensor caleulated from the non-cquilibrium simula-
tion,

Before closing this scction we bricfly define the flow situ-
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ations and the material functions that we investigate. In sim-
ple shear flow. the velocity field is given by v, = p. v,=0.
and v.=0.where 7 is the shear rate and may be time depen-
dent. At inception of shear flow. the system is initially at
cquilibrium and the stress tensor vanishes. For time 72 0. a
constant shear ratc ¥ is applicd and the stresses grow until
they reach their steady state valucs. In this casc. we define
three time-dependent material functions such as viscosity 1'.
first normal stress cocfTicient ¥ . and second normal stress

coefficient ¥, in dimensionless form: 1 =-7,/%. ¥ =
(T = T )7 Wa=—(7,—.)/% . In simple elonga-
tional 11‘10\\-; the velocity profile is given by Vimy Ex.
\{,F—zé}-'. and v.=+&z . where the clongation ratc may be a
function of time. For time 7 > 0. a time-dependent material

function describing the growth of the stresses in constant
.- .. +
positive rate &, is defined as: 1 =—(7..- 7. )/¢, -

Results and Discussion

In this section. we compare the viscosities obtained from
simulation for the original FENE model with those of
FENE-P model and experimental date in both simple shear
and elongational flow. In order to obtain the polymeric stress
tensors of original FENE dumbbell model. we simulate
30000 dumbbells in each strain rate until the stress tensors
reach their steady state values. When the strain rate is low
(¥ < L.0. &< 1.0). we used the timestep Ar = 0.01. 0.0023
for shear and elongational flow. respectively. As the strain
rate increases. the timestep decreases in inverse ratio to the
strain rate: Ar=0.01/%,. 0.0025/¢&,. Time-dependent stress
tensor contributed from polymer molecule is calculated as
follows:

1 & QN
T,(H=6 -5 2 — )]
o) N Zl 1-0 ()b

where N is the number of dumbbells,
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Figure 1. Shear-rate-dependent wiscositv as a function of the
shear rate for vanous fimte extensibihty parameters b, (Open
svmbols represent simulation data and line curves represent the
prediction from constitulive equation)
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Figure 2. Shear-rate-dependent viscosily as @ [unction of the
shear rate for various anisotropy parameters o (Open svmbols
represent simulation data and line curves represent the prediction
from constitutive equation)

Shear flow field. Shear-ratc-dependent viscosity is pre-
sented for various [finite cxtensibility and anisotropy para-
mcters [or FENE-P and original FENE dumbbell model in
Figurc 1 and 2. We can scc that both models exhibit very
similar stcady responscs. The shear-rate~dependent viscosity
approachcs a constant valuc. zcro-shear-rate viscosity 173,. at
low shear rates and decreascs at high shear rates according to
a powcr-law. The [initc cxtensibility parameicr has a litle
influcnce on the shear-rate-dependent viscosity. The shear-
ralc-dependent viscosity for both models also shows very
similar responscs at higher shear rate regardless of the
anisotropy paramcters. As the shear rate increases. the slope
ol powcer-law region has the same value of =1 as mentioned
by Wicst. In cxperimental. ™ however. the slope ranges
between —0.4 and 0.9 in typical polymeric liquids.

[n Figure 3 and 4. we present the growth of viscosity afler
inception of shear Mow for various shear rates and aniso-
tropy paramcters. The viscosity of both modcls exhibils an
overshoot at high shear rate before it reaches platcau region
regardless of the anisotropy parameter. However. in contra-
diction to ¢xperimental obscryvations.* ™ the lower shear rate
curve cannot cnvelope the higher shear rale curves in both
modcls as shown in Figure 3. The protrusions of ligher rate
curve over the lower rate curve become grealer as the shear
ratc incrcascs for both models, However. we can sce (hat the
protrusions of viscosity curve in higher shear rate gradually
disappcar as the amisotropy paramcter increase. Figure 4
cxplams these behaviors. Figure 4 also shows that the maxi-
mum and platcau valuc of viscosity decrcase as the aniso-
tropy paramcter increases. Morcover. the overshoot occurs
m carlicr timc as the amsotropy paramcier ingreascs. The
mobility tensor used in Eq. (7) can account for these behay-
1ors. That 1s. as the anisotropy parameier incrcases under the
samg strain ratc. the inward movement of beads caused by
the spring force through the mobility tensor becomes larger:
m other words. the connector vector 1s likely to be less
deformed against the imposced strain,

The above results imply that shear-rate-dependent viscos-
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Figure 3. The growth of the viscositv after inception of shear
flow for various shear rates j . {Open svmbols represent
simulation data and line curves represent the prediction from
constitutive equation)
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Figure 4. The growth of the wiscositv after mception of shear

flow for various anisotropy parameters &. (Open symbols represent
simulation data and line curves represent the prediction [rom
conslilulive equation)

ily is more sensitive 1o the amisotropy paramceler than (o the
extensibility parameter for both models. While both modcls
show a similar response in stcady state viscosity. the growth
of viscosily of both modcls docs not coincide with cach
other m overshoot region at high strain rate. Especially in
small anisotropy paramcicr. the growth of viscositics of both
models cannot predict the experimental resulls.

Elongational flow ficld When the clongational rate is
high. the distribution Munction of dumbbell becomes sharply
peaked. thus the original FENE spring force can be approxi-
malcd to the FENE-P spring force as pointed out by Tan-
ner.'® Conscquently. the sicady statc clongational viscosity
of FENE-P modcl at high clongational rate will comeide
with that of oniginal FENE modecl.

Figurc 3 and 6 show the stcady state clongational viscosity
for various {inite cxtensibility and anmisotropy parameters.
respectively, Two models show very sumilar steady state
responscs: the clongational viscosity approaches a constant
valuc at low clongational rate. which 1s three times the corre-
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Figure 5. Steady state elongational viscosity as a tunction of the
clongation rate for various extensibility purameters b, (Open
symbols represent simulation data and line curves represent the
prediction trom constitutive equation)
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Figure 6. The steady state elongational viscosity as a function of
the clongation rale for various amisotropy paramelers & (Open
symbols represent simulation data and line curves represent the
prediction trom constitutive equation)

sponding zcro-shear-rate viscosity. Contrary (o the original
Gicsckus simple model.™ we can just find the viscosity-
thinning behaviors except ex= 0.0, [n Figure 3. we can sce
that the maximum valuc of viscosilty ncrcascs and the
curves become broad with increasing the finite extensibility
parameter. Figure 6 clearly shows that the viscosity -thinning
behavior occur even in a small amsolropy parameler.

The growth of the viscosity afler inception of clongational
flow for various clongational rales and amisotropy paramc-
ters 18 shown in Figure 7 and 8. As docs in shear flow. the
differences of viscosity for both modcls increase atl interme-
diate ime region regardicss of the clongational rate and the
anisotropy paramecters. Figure 7 shows that the growth of the
viscosity becomes steeper and occurs carlicr in time as the
clongational ratc incrcascs in both models. The viscosily of
the onginal FENE modcl approaches the steady state valuc
more smoothly than that of the FENE-P modcl at high ¢lon-
gational ratc. In Figure 8. we can sce that the clongational
viscosity decrcascs as the anisotropy paramcicr increascs.
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Figure 7. The growth of the viscosity after mception of
elongational tlow for various elongational rates &, . {Open symbols
represent simulation data and line curves represent the prediction
[rom constitutive equation)
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Figure 8 The growlh of the viscosity after inception ol clon-
gational low lor various anisotropy paramelers a. (Open symbols
represent simulation data and hne curves represent the prediction
from constitutive equation)

However. we cannol reproduce the strain-hardening behav-
ior at high ratc regardless of any oxtensibility and anisotropy
parameters in both modcls.

From (he above results of shear and clongation (low. we
saw that there exists discrepancy i growth of viscosity
between both modcls. whercas the sicady state viscosity 1s
comcided with cach other. These disagreements are causcd
by the difference of FENE spring force and the ¢xpression
of stress tensor. That is (o say. the non-lincar force factor
of the original FENE spring force increase steeply as the
extension of the dumbbell is closc to the allowable length,
Thus som¢ population ol highly stretched dumbbells leads to
the high valucd stress tensor and mobility tensor, Further-
morc (he original FENE dumbbells responsce to the indivi-
dual spring force. whilc the FENE-P dumbbells is enforced
by the non-lincar spring force in which the non-lincar spring
force factor is replaced by an averaged value. These differ-
ences of non-lincar spring force and its insertion into the
stress and the mobility tensor are drastically shown in Figure
7.
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Figure 9. Comparison ot the original FENE dumbbell model tor
the shear-rate-dependent viscosity with the data of Menezes' tor
polvstyrene solution. The data of dumbbells are drawn for
Jap = 3108 and nkl 7= 63,095 Pa s, (lilled symbols represent the
data of Menezes'” and line-open svmbols represent the simulation
data)
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Figure 10. Comparison of the original FENL dumbbell model for
the growth of shear viscosity with (he data of polystyrene
solution.!” The data of FENE dumbbells are drawn for Ay = 31.6s
and #kTAz= 79432 Pa s, which are obtained when we fit the
viscosily data with the experimental data in Figure 9. (Iilled
symbols represent the data of Menezes' and linc-open symbols
represent simulation data)

Comparisons with experimental data. Besides the depen-
dence of the viscoclasticity on the external paramelers such
as strain ratc. time. tcmperature. and concentration. the rheo-
logical propertics of polymeric liquid arc afecied by the
molccular parameters: molecular weight. molccular weight
distribution. and chain branching. In (his scclion. we com-
parc our simulation data ol original FENE dumbbcll model
with nearly monodisperse polystyrenc solution'” and melt.'
and largely polydisperse and branched low-density polyeth-
ylene melt.'

Figurc 9 shows the stcady state shear viscosity and [irst
normal stress cocfTicient as a function of shear rate for simu-
lation and the ncarly monodisperse polystyrene solution.'’
Though our simulation data describe the experimental resulls
qualtatively. we cannot fit the data of viscosity and first
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normal stress cocfficient simultancously : if we make viscos-
ity coincided. there is a bit of discrepancics in first normal
stress coclTicient between simulation and experiment. and vice
versa. In Figure 10. we show the start-up viscosity for the
same maicrial with the parameters with which the viscosity
data arc coincided in Figurc 9. As we mentioned in Figure 3.
that is. the viscosity curve of lower shear rate cannot enve-
lopc the high shear rate curves. the simulation data can
hardly describe the experimental results except for the plateau
region.

Figure 11 shows the data of Laun™ for the sicady state
clongational viscosity of low-density polvethylene melt.
named by IUPAC-A. and the corresponding resulis of simu-
lation. The agreement between the simulation resulls and
experimental data is remarkable. With the paramclers uscd
in Figure 11. we show the growth of clongational viscosity
for the samc matcrial in Figure 12. Though the stcady slate

log(n)

{UPAC-A
—O—  Simulation

s L ) | N 2 N

-5 -4 -3 -2 -1 0 1
log(&,)
Figure 11. Comparison of the original I'ENL dumbbell model for
the steadv state elongational viscosity with the data of Laun' for
the TUPAC-A polvmer melt. The data of dumbbell are drawn tor
Ay = 100.0s and wkTAy = 56.234 Pa s, (Iilled symbols represent the
data of Laun’ and linc-open symbols represents the simulation
data)
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Figure 12. Comparison of the original FENE dumbbell model for
the growth of viscosity with the data of Laun' for the ITUPAC-A
polvmer melt. The data of dumbbells are drawn for the smne
parameters m Figure 11. (Filled svmbols represent the data of
Laun'® and linc-open svmbols represent the simulation data)
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viscosity of FENE dumbbell model coincides well with the
cxperimental results. the behaviors of growth of viscosity
cannot describe the growth of the clongational viscosity.
cspecially in the carly time region.

Figurc 13 shows the data of Miinstedt'® for the stcady statc
clongational viscosity of polystyrenc melt and the results of
simulation. As does in [UPAC-A mclts. the agrecement
between the results of simulation and experiment is remark-
able. Using the same paramcters used in Figure 13, we show
the growth of viscosity for the same matcerial in Figure 14,
Though the growth of viscosity of dumbbell model cannot
exactly describe the growth ol the clongational viscosity for
necarly monodisperse polystyvrene melt. the discrepancy in
the viscosity of polystyrene melt is smaller than IUPAC-A
polvmer melt. This is probably a conscquence of the mole-
cular paramcters. The IUPAC-A polymer melt is the largely
polvdisperse. M,./M, =249 and highly branched chain.
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Figure 13. Comparison of the original FENL dumbbell model for
the steady stale clongational viscosity with the data of Miinstedt'™
tor the polystvrene melt. The data of original FENE dumbbell are
drawn tor A;; = 19.9 s and #kT A, = 2 818.382 Pa s. (Filled symbols
represent the data of Miinstedt'® and line-open symbols represents
the simulation Jate)
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Figure 14. Companson of the FENE dumbbell model tor the
growth of elongational viscosity with the data of Minstedt.'S The
data of FENLE dumbbell are drawn for the same parameters in
Figure 13. (Filled symbols represent the data of Minsted('™ and
line-open symbols represent the simulanion date)
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Whercas the poly styrene melt possesses a narrow molecular
weight distribution. M,,/M, =121

From our study for the anisotropic FENE dumbbell mod-
cls. we find that these models well describe the experimental
results 1n steady state viscosity for shear flow and clonga-
tional Mow. However. the FENE dumbbell models cannot
reproduce the growth of viscosity of polymer solution and
the melt in both flow ficlds. Besides the molecular parame-
ters such as molccular weight. molecular weight distribution.
and branching. there arce seycral causes for the discrepancy
in growth of viscosity between dumbbell models and ¢xperi-
ments. 1) We oversimplily the polymer chain as dumbbell
model that cannot take up an cnormous number of configu-
rations of polymer chain. 2) The difTusion cquation for
dumbbell model cannot represent the chain cntanglement
phenomena. by which the viscoclasticity of concentraled
polymer solution and the meli is rigorously aflected. 3) The
averaged mobility tensor cannol correclly represent the
anisotropy of polvmer chain, [n concentrated polymer solu-
tion and the melt. we can rcasonably assume that the chain
motion is governed not by averaged means but by the instan-
tanceus configuration of individual chain.

Conclusions

We have mvestigated the viscosily of concentrated poly-
mcr solution and the melt using the Brownian dynamics sim-
ulation [or anisotropic original FENE dumbbcll modcl. The
original FENE dumbbell modcl as well as FENE-P modcl
described well the steady state viscosity of polymer solution
and the melt m shear and clongational (low. Considering the
simplicity of the dumbbell model in our study. we can prob-
ably predict the growth of viscosily in both flow [iclds by
using a more realistic polvmer chain model such as bead-
spring chain modcl or bead-rod chain model. Furthcrmore.
we can also oblain better simulation results by taking account
of cntanglement clicct and introducing instantancous mobil-
ily 1Cnsors,
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