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We study the rheological properties of concentrated polymer solution and the melt under simple shear and elon- 
gational flow using Brownian dynamics simulation. In order to describe the anisotropic molecular motion, we 
modified the Giesekus’ mobility tensor by incorporating the finitely extensible non-linear elastic (FENE) 
spring force into dumbbell model. To elucidate the nature of this model, our simulation results are compared 
with the data of FENE-P ("P” stands for the Perterin) dumbbell model and experiments. While in steady state 
both original FENE and FENE-P models exhibit a similar viscosity response, the growth of viscosity becomes 
dissimilar as the anisotropy decreases and the flow rate increases. The steady state viscosity obtained from the 
simulation well describes the experiments including the shear-thinning behavior in shear flow and viscosity­
thinning behavior in elongational flow. But the growth of viscosity of original FENE dumbbell model cannot 
describe the experimental results in both flow fields.

Introduction

The molecular motions in concentrated polymer solution 
and the melt are complex because of the intermolecular 
interactions between different chains. In recent years, de 
Gennes,1 Doi,2-3 and Curtiss et al.4 have described the chain 
motion in such a topologically interacting system. In order to 
derive the theoretical formula, they assumed that the mole­
cular motion in the direction of the chain contour might be 
easier than the motion perpendicular to it. Giesekus5 also 
used the assumption of anisotropic molecular motion in 
order to derive the constitutive equation for polymeric liq­
uids. One-mode simple Giesekus’ model well predicted the 
steady state viscosity and the growth of shear viscosity.5-b,c 
However, in elongational flow field, his simple model could 
not show the characteristic behaviors of polymeric liquids 
such as strain-hardening in transient state and viscosity­
thinning in steady state. To overcome the oversimplified 
one-mode simple model, he introduced the relaxation-type 
dependence of the mobility5-d on the configuration tensor.

The same constitutive equation of simple Giesekus’ model 
can be also derived in terms of the phase-space kinetic 
theory6 of polymeric liquids if we consider a polymer chain 
as a Hookian dumbbell which consists of two identical beads 
connected by a massless spring named connector vector. The 
linear Hookean spring force is realistic only for small defor­
mation from the equilibrium. Whereas the dumbbell with 
Hookean spring is infinitely extensible, real polymers can 
certainly be extended to their fully stretched length at most. 
For large extension of a polymer the linear spring-force law 
is a poor approximation, so it can be improved by introduc­
ing the FENE spring force.7 Dumbbell models with FENE 
spring force are now widely used in numerical flow calcula­
tions; both in the classical approach via a closed constitutive 
equation8 and in a new approach in which the polymeric 
stress tensors are computed via Brownian dynamics (BD) 

simulation.9
Wiest10 modified the Giesekus constitutive equation by 

incorporating the finite extensibility of polymer chains into 
the dumbbell kinetic theory. The modified constitutive equa­
tion quantitatively described the steady state viscosity in the 
shear and elongational flow, but could not reproduce the 
growth of viscosity in elongational flow. When he modified 
the constitutive equation, he used the FENE-P11 spring force 
in order to obtain an analytically more tractable constitutive 
equation because no closed constitutive equation for the 
polymeric stress tensor exists and no simple analytical solu­
tions are possible for original FENE dumbbell model.

In this paper, we use the Brownian dynamics simulation 
method to obtain the polymeric stress tensors for the original 
FENE dumbbell model with the anisotropic mobility tensor. 
We also derive the constitutive equation in simple form for 
the FENE-P dumbbell model using the phase-space kinetics 
theory. From the Brownian dynamics simulation, we obtain 
the growth of and steady state viscosity for simple shear and 
elongational flow. These results will be compared with those 
of FENE-P dumbbell model and experimental data.

Constitutive equation for the FENE-P dumbbell model

The diffusion equation of configurational distribution 
function 1/(Q, t)4-d for connector vectors Q = ^-匚 of 
anisotropic dumbbells can be represented by:

의/=-으
dt dQ

•' K Qw-WT；' - \dQ -尸//-2尸-麥/ > (1) 

where K is the transpose of macroscopic velocity gradient, kB 
is the Boltzmann constant, T is the absolute temperature,厂 
is the anisotropic mobility tensor, ^~ is a tensor for the 
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anisotropic Brownian motion, and F(c) is the connector 
force. In order to represent the anisotropic molecular motion, 
we use the anisotropic mobility tensor,厂，suggested by 
Giesekus5-b in terms of the macroscopic quantity:

a 
n辭.

-1
G (2)

where G is the friction coefficient of a bead, 8 is a unit tensor, 
a is an anisotropy parameter, n is the number density of
polymer molecules, and 弓 is the stress tensor contributed 
from polymer molecules. If we assume the Brownian motion 
is isotropic (^ = 8), we can obtain the polymer contribu­
tion to the stress tensor of Kramers expression:4-d

T = nkBT8 - n〈 QF^气 (3)

where the angular brackets indicate an ensemble average 
over all Q using 1/( Q, t).

Warner7 proposed the following original FENE spring 
force:

F® = HQ (Q < Q )
1-( Q/Qo )2

(4)

where H is the spring constant, Q is the length of connector 
vector, and Qo is the maximum extensible spring length. 
When this original spring force is applied to Eq. (1), no 
closed constitutive equation for the polymeric stress tensor 
exists and no simple analytical solution is possible. There­
fore, we will evaluate the average of the stress tensor via 
Brownian dynamics simulation.12-13 An analytically more 
tractable dumbbell model which leads to a closed constitu­
tive equation can be obtained by replacing the configuration­
dependent non-linear factor in the FENE spring force with a 
self-consistenly averaged term. The FENE-P ("P” stands for 
Peterlin11 who introduced this idea) approximation for 
FENE spring force is expressed as:

成=匚〈끖节 (Q < Qo) (5)

Using the FENE-P spring force, we obtain the closed consti­
tutive equation

Tp + (花)(1)-a{TP - Tp } = (Z8)(1), Z =山 *、
b+3-Tr(弓)

(6)
*、where Tr(Tp) is the trace of the stress tensor in reduced 

units, and the subscription (1) of A(1) denotes upper convec-
、,广 DA , 、、、 t、、 〜tive derivative of A;入⑴=-D--(k・ A + A - k ), here D/ 

Dt is the material time derivative and K is the transpose of 
K. This constitutive equation is equivalent to Eq. (8) of 
Wiest1o if we express the parameter Z into reciprocal form. 
In deriving Eq. (6), we used the reduced units: time t = M*, 

Xh = G/4H, length Q = lQ*, l2 = kBT/H, finite extensibility 
parameter b = HQg/kBT, and stress tensor Tp = nkBT矿 
Hereafter, we will express the physical quantities in reduced 
units without any superscripts.

Brownian dynamics simulation for origin지 FENE 
dumbbell

When we assume the Brownian motion is isotropic (f1 
=8), Eq. (1) is equivalent to the Ito stochastic differential 
equation14 (SDE) for a three-dimensional Markov process 
Q:

dQ = fk Q-4g< - —Q)dt + B - dW (7) 
I 2 1 -(Q2/b)

where g-1 = 8 - aTp, B - BT=g-1 ,〈 W( t)〉=0, and〈 W( t】) 

W( t2 )〉= min(t1, 0 8.
The Wiener process W is the 3-dimensional Gaussian pro­

cess of which first moment is zero vector and second 
moment is a diagonal matrix whose element is minimum 
time between two Wiener processes. The first term of right 
side of Eq. (7) is that of the deterministic ordinary differen­
tial equation (ODE), and referred as drift term. The Brown­
ian motion of dumbbell causes Wiener process that 
distinguishes the SDE from the ODE, so the second term is 
referred as diffusion term. Since the non-linear Eq. (7) can­
not be solved analytically, we have to integrate it numeri­
cally. The simplest numerical method to integrate Eq. (7) is 
the Euler scheme.14 For a given timestep At, the Euler 
scheme is given by

Q( t + A t) = Q( t) +

fK(t) - Q(t) - k(t)-1 -—四-)一)厶t + B( t) - A W
I 2 1 -(Q(t)2/b)丿 (8)

where the increment AW=W(t + At)-W(t) is an indepen­
dent 3-dimensional Gaussian process that has the same sta­
tistical properties in Eq. (7).

During the simulation according to Eq. (8), there is a cer­
tain probability that the connector vector exceeds the 
allowed spring extension for FENE dumbbell model. To 
avoid such unphysical range, we use the predictor-corrector 
Euler method.14 At low flow rate, the diffusion term intro­
duces the fluctuation into the ensemble averaged stress ten­
sor, which appears as unwanted “noise”. This noise severely 
limits our ability to calculate low flow rate viscosity, where 
the signal to noise ratio becomes very small. This undesir­
able noise can be reduced by variance reduction method15; 
we run a parallel equilibrium simulation (i.e. k= 0) from the 
same initial configurations and with the same stochastic dis­
placements (i.e. We = W), then we obtain the variance 
reduced stress tensor by subtracting equilibrium values from 
the stress tensor calculated from the non-equilibrium simula­
tion.

Before closing this section we briefly define the flow situ-
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ations and the material functions that we investigate. In sim­
ple shear flow, the velocity field is given by * = Y, Vy=0, 
and Vz=0, where / is the shear rate and may be time depen­
dent. At inception of shear flow, the system is initially at 
equilibrium and the stress tensor vanishes. For time t > 0, a 
constant shear rate 7o is applied and the stresses grow until 
they reach their steady state values. In this case, we define 
three time-dependent material functions such as viscosity n+, 
first normal stress coefficient 甲+, and second normal stress

0

coefficient 甲+ in dimensionless form:=-，％，/Yo, 中+ = 
-(Txx - Tyy) / T2,甲+ = -(Tyy - Tzz)/ >0- In simple el^ga- 
tional flow, the velocity profile is given by Vx=-財x, 

1 2
Vy=-2 沙,and Vz=+£z, where the elongation rate may be a 
function of time. For time t > 0 , a time-dependent material 

U -1 

0)
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Figure 2. Shear-rate-dependent viscosity as a function of the 
shear rate for various anisotropy parameters a. (Open symbols 
represent simulation data and line curves represent the prediction 
from constitutive equation)

function describing the growth of the stresses in constant 
positive rate £o is defined as: n = 一(弓-Txx)/祐.

Results and Discussion

In this section, we compare the viscosities obtained from 
simulation for the original FENE model with those of
FENE-P model and experimental date in both simple shear 
and elongational flow. In order to obtain the polymeric stress 
tensors of original FENE dumbbell model, we simulate 
30000 dumbbells in each strain rate until the stress tensors 
reach their steady state values. When the strain rate is low 
(Y0 < 1.0, £0 < 1.0), we used the timestep At = 0.01, 0.0025 
for shear and elongational flow, respectively. As the strain 
rate increases, the timestep decreases in inverse ratio to the 
strain rate: At=0.01/ Y0, 0.0025/爲.Time-dependent stress 
tensor contributed from polymer molecule is calculated as 
follows:

1 § 0(t)0(t) 
瓦」1 1-Q2 (t )/b (9)

where N is the number of dumbbells.

Figure 1. Shear-rate-dependent viscosity as a function of the 
shear rate for various finite extensibility parameters b. (Open 
symbols represent simulation data and line curves represent the 
prediction from constitutive equation)

Shear flow field. Shear-rate-dependent viscosity is pre­
sented for various finite extensibility and anisotropy para­
meters for FENE-P and original FENE dumbbell model in 
Figure 1 and 2. We can see that both models exhibit very 
similar steady responses. The shear-rate-dependent viscosity 
approaches a constant value, zero-shear-rate viscosity no, at 
low shear rates and decreases at high shear rates according to 
a power-law. The finite extensibility parameter has a little 
influence on the shear-rate-dependent viscosity. The shear­
rate-dependent viscosity for both models also shows very 
similar responses at higher shear rate regardless of the 
anisotropy parameters. As the shear rate increases, the slope 
of power-law region has the same value of -1 as mentioned 
by Wiest.10 In experimental,4" however, the slope ranges 
between -0.4 and -0.9 in typical polymeric liquids.

In Figure 3 and 4, we present the growth of viscosity after 
inception of shear flow for various shear rates and aniso­
tropy parameters. The viscosity of both models exhibits an 
overshoot at high shear rate before it reaches plateau region 
regardless of the anisotropy parameter. However, in contra­
diction to experimental observations,4-d the lower shear rate 
curve cannot envelope the higher shear rate curves in both 
models as shown in Figure 3. The protrusions of higher rate 
curve over the lower rate curve become greater as the shear 
rate increases for both models. However, we can see that the 
protrusions of viscosity curve in higher shear rate gradually 
disappear as the anisotropy parameter increase. Figure 4 
explains these behaviors. Figure 4 also shows that the maxi­
mum and plateau value of viscosity decrease as the aniso­
tropy parameter increases. Moreover, the overshoot occurs 
in earlier time as the anisotropy parameter increases. The 
mobility tensor used in Eq. (7) can account for these behav­
iors. That is, as the anisotropy parameter increases under the 
same strain rate, the inward movement of beads caused by 
the spring force through the mobility tensor becomes larger; 
in other words, the connector vector is likely to be less 
deformed against the imposed strain.

The above results imply that shear-rate-dependent viscos-
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Figure 3. The growth of the viscosity after inception of shear 
flow for various shear rates Yo . (Open symbols represent 
simulation data and line curves represent the prediction from 
constitutive equation)

Figure 5. Steady state elongational viscosity as a function of the 
elongation rate for various extensibility parameters b. (Open 
symbols represent simulation data and line curves represent the 
prediction from constitutive equation)
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Figure 4. The growth of the viscosity after inception of shear 
flow for various anisotropy parameters a. (Open symbols represent 
simulation data and line curves represent the prediction from 
constitutive equation)

I
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Figure 6. The steady state elongational viscosity as a function of 
the elongation rate for various anisotropy parameters a. (Open 
symbols represent simulation data and line curves represent the 
prediction from constitutive equation)

ity is more sensitive to the anisotropy parameter than to the 
extensibility parameter for both models. While both models 
show a similar response in steady state viscosity, the growth 
of viscosity of both models does not coincide with each 
other in overshoot region at high strain rate. Especially in 
small anisotropy parameter, the growth of viscosities of both 
models cannot predict the experimental results.

Elongational flow fi이d. When the elongational rate is 
high, the distribution function of dumbbell becomes sharply 
peaked, thus the original FENE spring force can be approxi­
mated to the FENE-P spring force as pointed out by Tan- 
ner.16 Consequently, the steady state elongational viscosity 
of FENE-P model at high elongational rate will coincide 
with that of original FENE model.

Figure 5 and 6 show the steady state elongational viscosity 
for various finite extensibility and anisotropy parameters, 
respectively. Two models show very similar steady state 
responses; the elongational viscosity approaches a constant 
value at low elongational rate, which is three times the corre­

sponding zero-shear-rate viscosity. Contrary to the original 
Giesekus simple model,5-b we can just find the viscosity­
thinning behaviors except a= 0.0. In Figure 5, we can see 
that the maximum value of viscosity increases and the 
curves become broad with increasing the finite extensibility 
parameter. Figure 6 clearly shows that the viscosity-thinning 
behavior occur even in a small anisotropy parameter.

The growth of the viscosity after inception of elongational 
flow for various elongational rates and anisotropy parame­
ters is shown in Figure 7 and 8. As does in shear flow, the 
differences of viscosity for both models increase at interme­
diate time region regardless of the elongational rate and the 
anisotropy parameters. Figure 7 shows that the growth of the 
viscosity becomes steeper and occurs earlier in time as the 
elongational rate increases in both models. The viscosity of 
the original FENE model approaches the steady state value 
more smoothly than that of the FENE-P model at high elon- 
gational rate. In Figure 8, we can see that the elongational 
viscosity decreases as the anisotropy parameter increases.
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Figure 7. The growth of the viscosity after inception of 
elongational flow for various elongational rates 场.(Open symbols 
represent simulation data and line curves represent the prediction 
from constitutive equation)
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Figure 8. The growth of the viscosity after inception of elon- 
gational flow for various anisotropy parameters a. (Open symbols 
represent simulation data and line curves represent the prediction 
from constitutive equation)

However, we cannot reproduce the strain-hardening behav­
ior at high rate regardless of any extensibility and anisotropy 
parameters in both models.

From the above results of shear and elongation flow, we 
saw that there exists discrepancy in growth of viscosity 
between both models, whereas the steady state viscosity is 
coincided with each other. These disagreements are caused 
by the difference of FENE spring force and the expression 
of stress tensor. That is to say, the non-linear force factor 
of the original FENE spring force increase steeply as the 
extension of the dumbbell is close to the allowable length. 
Thus some population of highly stretched dumbbells leads to 
the high valued stress tensor and mobility tensor. Further­
more the original FENE dumbbells response to the indivi­
dual spring force, while the FENE-P dumbbells is enforced 
by the non-linear spring force in which the non-linear spring 
force factor is replaced by an averaged value. These differ­
ences of non-linear spring force and its insertion into the 
stress and the mobility tensor are drastically shown in Figure
7.

트:
3

-1 o

log(么)

1 2

Figure 9. Comparison of the original FENE dumbbell model for 
the shear-rate-dependent viscosity with the data of Menezes17 for 
polystyrene solution. The data of dumbbells are drawn for 
Xh = 31.6s and nkT^H = 63,095 Pa s. (Filled symbols represent the 
data of Menezes17 and line-open symbols represent the simulation 
data)
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Figure 10. Comparison of the original FENE dumbbell model for 
the growth of shear viscosity with the data of polystyrene 
solution.17 The data of FENE dumbbells are drawn for 人h = 31.6s 
and nkT^H = 79,432 Pa s, which are obtained when we fit the 
viscosity data with the experimental data in Figure 9. (Filled 
symbols represent the data of Menezes17 and line-open symbols 
represent simulation data)

Comparisons with experimental data. Besides the depen­
dence of the viscoelasticity on the external parameters such 
as strain rate, time, temperature, and concentration, the rheo­
logical properties of polymeric liquid are affected by the 
molecular parameters: molecular weight, molecular weight 
distribution, and chain branching. In this section, we com­
pare our simulation data of original FENE dumbbell model 
with nearly monodisperse polystyrene solution17 and melt,18 
and largely polydisperse and branched low-density polyeth­
ylene melt.19

Figure 9 shows the steady state shear viscosity and first 
normal stress coefficient as a function of shear rate for simu­
lation and the nearly monodisperse polystyrene solution.17 
Though our simulation data describe the experimental results 
qualitatively, we cannot fit the data of viscosity and first 
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normal stress coefficient simultaneously; if we make viscos­
ity coincided, there is a bit of discrepancies in first normal 
stress coefficient between simulation and experiment, and vice 
versa. In Figure 10, we show the start-up viscosity for the 
same material with the parameters with which the viscosity 
data are coincided in Figure 9. As we mentioned in Figure 3, 
that is, the viscosity curve of lower shear rate cannot enve­
lope the high shear rate curves, the simulation data can 
hardly describe the experimental results except for the plateau 
region.

Figure 11 shows the data of Laun19 for the steady state 
elongational viscosity of low-density polyethylene melt,
named by IUPAC-A, and the corresponding results of simu­
lation. The agreement between the simulation results and
experimental data is remarkable. With the parameters used 
in Figure 11, we show the growth of elongational viscosity 
for the same material in Figure 12. Though the steady state 

viscosity of FENE dumbbell model coincides well with the 
experimental results, the behaviors of growth of viscosity 
cannot describe the growth of the elongational viscosity, 
especially in the early time region.

Figure 13 shows the data of Munstedt18 for the steady state 
elongational viscosity of polystyrene melt and the results of 
simulation. As does in IUPAC-A melts, the agreement 
between the results of simulation and experiment is remark­
able. Using the same parameters used in Figure 13, we show 
the growth of viscosity for the same material in Figure 14. 
Though the growth of viscosity of dumbbell model cannot 
exactly describe the growth of the elongational viscosity for 
nearly monodisperse polystyrene melt, the discrepancy in 
the viscosity of polystyrene melt is smaller than IUPAC-A 
polymer melt. This is probably a consequence of the mole­
cular parameters. The IUPAC-A polymer melt is the largely 
polydisperse, Mw/M =24.9 and highly branched chain.19 

Figure 11. Comparison of the original FENE dumbbell model for 
the steady state elongational viscosity with the data of Laun19 for 
the IUPAC-A polymer melt. The data of dumbbell are drawn for 
Ah = 100.0s and nkTA-H = 56,234 Pa s. (Filled symbols represent the 
data of Laun19 and line-open symbols represents the simulation 
data)

Figure 13. Comparison of the original FENE dumbbell model for 
the steady state elongational viscosity with the data of Munstedt18 
for the polystyrene melt. The data of original FENE dumbbell are 
drawn for Ah - 19.9 s and nkTA，H = 2,818,382 Pa s. (Filled symbols 
represent the data of Munstedt18 and line-open symbols represents 
the simulation date)

Figure 12. Comparison of the original FENE dumbbell model for 
the growth of viscosity with the data of Laun19 for the IUPAC-A 
polymer melt. The data of dumbbells are drawn for the same 
parameters in Figure 1 1. (Filled symbols represent the data of 
Laun19 and line-open symbols represent the simulation data)

Figure 14. Comparison of the FENE dumbbell model for the 
growth of elongational viscosity with the data of Munstedt.18 The 
data of FENE dumbbell are drawn for the same parameters in 
Figure 13. (Filled symbols represent the data of Munstedt18 and 
line-open symbols represent the simulation date)
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Whereas the polystyrene melt possesses a narrow molecular 
weight distribution, Mw/M =1.2.18

From our study for the anisotropic FENE dumbbell mod­
els, we find that these models well describe the experimental 
results in steady state viscosity for shear flow and elonga- 
tional flow. However, the FENE dumbbell models cannot 
reproduce the growth of viscosity of polymer solution and 
the melt in both flow fields. Besides the molecular parame­
ters such as molecular weight, molecular weight distribution, 
and branching, there are several causes for the discrepancy 
in growth of viscosity between dumbbell models and experi­
ments. 1) We oversimplify the polymer chain as dumbbell 
model that cannot take up an enormous number of configu­
rations of polymer chain. 2) The diffusion equation for 
dumbbell model cannot represent the chain entanglement 
phenomena, by which the viscoelasticity of concentrated 
polymer solution and the melt is rigorously affected. 3) The 
averaged mobility tensor cannot correctly represent the 
anisotropy of polymer chain. In concentrated polymer solu­
tion and the melt, we can reasonably assume that the chain 
motion is governed not by averaged means but by the instan­
taneous configuration of individual chain.

Conclusions

We have investigated the viscosity of concentrated poly­
mer solution and the melt using the Brownian dynamics sim­
ulation for anisotropic original FENE dumbbell model. The 
original FENE dumbbell model as well as FENE-P model 
described well the steady state viscosity of polymer solution 
and the melt in shear and elongational flow. Considering the 
simplicity of the dumbbell model in our study, we can prob­
ably predict the growth of viscosity in both flow fields by 
using a more realistic polymer chain model such as bead­
spring chain model or bead-rod chain model. Furthermore, 
we can also obtain better simulation results by taking account 
of entanglement effect and introducing instantaneous mobil­
ity tensors.
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