DOI QR코드

DOI QR Code

Ionization and Divalent Cation Complexation of Quinolone Antibiotics in Aqueous Solution


Abstract

The protonation and divalent cation complexation equilibria of several quinolone antibiotics such as nalidixic acid (NAL),flumequine (FLU), oxolinic acid (OXO), ofloxacin (OFL), norfloxacin (NOR) and enoxacin (ENO) have been examined by potentiome tric titration and spectrophotometric method. The antibacterial activity of these drugs depends upon the pH and the concentration of metal cations such as Mg2+ , Ca2+ in solu-tion. The apparent ionization constants of NAL, FLU, OXO, OFL, NOR and ENO in aqueous solution were found to be 6.33, 6.51, 6.72, 7.18, 7.26, and 7.53, respectively. In aqueous solution, NAL, FLU and OXO were found to be present mainly as two chemical species : molecularand anionic; but OFL, NOR and ENO were present mainly as three chemical species : anionic, neutral zwitterionic and cationic form, in equilibrium. The pKa1 and pKa2are found to be 6.10 and 8.28 for OFL; 6.23 and 8.55 for NOR; 6.32 and8.62 for ENO, respec-tively. The complex formation constants between OFL, NOR or FLU and some divalent cations are measured at pH 7.5. The 1 : 1 complexes are formed mainly by ion-dipole interaction. FLU has somewhat larger Kf values than OFL and NOR because its molecular size is small and the FLU is present asanionic form at pH 7.5.

Keywords

References

  1. J. Antimicrobial Chemotherapy v.37 no.Suppl. A Mizuki, Y.;Fujiwara, I.;Yamaguchi, T.
  2. Acta Chemica Scandinavica v.51 Snaz-Nebot, V.;Valls, I.;Barbero, D.;Barbosa, J.
  3. Int. J. Pharm. v.149 Barbosa, J.;Berges, R.;Toro, I.;Sanz-Nebot, V.
  4. Clin. Pharmacokinetics v.14 Neuman, M.
  5. Pharm. Res. v.11 Yu, X.;Zipp, G. L.;Davidson, W. R.
  6. J. Pharm. Sci. v.79 Takacs-Novak, K.;Noszal, B.;Hermecz, I.;Kereszturi,G.;Podanyi, B.;Szasz, G.
  7. The Quinolones Smith, J. T.;Lewin, C. S.;Andriole, V. T.(Ed.)
  8. Photochem. Photobiol. v.71 Park, H. R.;Lee, H. C.;Kim, T. H.;Lee, J. K.;Yang, K.Y.;Bark, K. M.
  9. Bioinorg. Chem. v.9 Timmers, K.;Sternglanz, R.
  10. Photochem. Photobiol. v.64 Martinez, L.;Bilski, P.;Chignell, C. F.
  11. The Determination of Ionization Constants (3rd Ed.) Albert, A.; Serjeant, E. P.
  12. Proc. Natl. Acad. Sci. USA, v.89 Pala, G.;Valisena, S.;Ciarrocchi, G.;Gatto, B.;Palumbo, M.
  13. J. Chrom. A. v.668 Bazile-Pham Khac, S.;Moreau, N. J.
  14. Photochem. Photobiol. v.62 Ferguson, J.
  15. Biochem. Biophys. Res. Commun. v.44 Slater, J.;Mildvan, A.;Loeb, L.
  16. J. Biol. Chem. v.248 Springgate, C.;Mildvan, A.;Abramson, R.;Engle, J.;Loeb, L.
  17. Biochem. Biophys. Res. Commun. v.53 Valenzuela, P.; Morris, R.; Faras, A.; Levinson, W.; Rutter, W.
  18. J. Am. Chem. Soc. v.85 Hermans, Jr, J.;Leach, S. J.;Scheraga, H. A.
  19. J. Am. Chem. Soc. v.73 Elderfield, R. D.;Siegel, M. J.
  20. Int. J. Pharmacol. v.83 Ross, D. L.;Riley, C. M.
  21. J. Phys. Chem. v.72 Hetzer, H. B.;Robinson, R. A.;Bates, R. G.
  22. Electrochim. Acta v.17 Enea, D.;Honughossa, K.;Berthon, G.
  23. Int. J. Pharm. v.22 Bailey, A. J. G.;Cole, A.;Goodfield, J.;May, P. M.;Dreyfuss,M. E.;Midgley, J. M.;Williams, D. R.
  24. Anal. Chimi. Acta v.90 Jimenez Sanchez, J. C.;Munoz Leyva, J. A.;Roman Ceba, M.
  25. Int. J. Pharm. v.93 Ross, D. L.;Riley, C. M.
  26. Inor. Chim. Acta v.125 Behrens, N.;Mendoza-Diaz, G.
  27. Int. J. Pharm. v.87 Ross, D. L.;Riley, C. M.

Cited by

  1. Spectroscopic Properties of Fluoroquinolone Antibiotics in Water-methanol and Water-acetonitrile Mixed Solvents vol.75, pp.3, 2000, https://doi.org/10.1562/0031-8655(2002)075<0237:spofai>2.0.co;2
  2. Photochemical Reaction of Nalidixic Acid in Methanol vol.24, pp.11, 2000, https://doi.org/10.5012/bkcs.2003.24.11.1618
  3. Spectroscopic studies on the interaction of ofloxacin with metals vol.691, pp.1, 2004, https://doi.org/10.1016/j.molstruc.2003.11.053
  4. Photophysics and Photochemistry of Nalidixic Acid vol.82, pp.1, 2000, https://doi.org/10.1562/2005-04-11-ra-488
  5. Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations vol.27, pp.12, 2006, https://doi.org/10.5012/bkcs.2006.27.12.2002
  6. Synthesis, Crystal Structures and Photoluminescence Properties of Two 2D Coordination Polymer Compounds with Drug Ligand Enoxacin vol.24, pp.7, 2000, https://doi.org/10.1002/cjoc.200690171
  7. Fluorescence Quenching of Norfloxacin by Divalent Transition Metal Cations vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1573
  8. Sorption and transport of acetaminophen, 17α-ethynyl estradiol, nalidixic acid with low organic content aquifer sand vol.41, pp.10, 2000, https://doi.org/10.1016/j.watres.2007.01.057
  9. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release vol.138, pp.3, 2000, https://doi.org/10.1016/j.jconrel.2009.05.027
  10. Syntheses, crystal structures of Ni(II), Ag(I)-enoxacin complexes, and their antibacterial activity vol.63, pp.18, 2000, https://doi.org/10.1080/00958972.2010.507811
  11. Electrospray tandem quadrupole fragmentation of quinolone drugs and related ions. On the reversibility of water loss from protonated molecules : Mass spectrometry of quinolone drugs vol.24, pp.22, 2010, https://doi.org/10.1002/rcm.4769
  12. Spectroscopic Properties of Quercetin-3-O-rhamnoside and Quercetin-3-O-rutinoside in Aerosol-OT Reverse Micelles vol.32, pp.3, 2000, https://doi.org/10.5012/bkcs.2011.32.3.981
  13. Electrochemical investigation and DNA-binding studies of pefloxacin-metal(II/III) complexes vol.64, pp.19, 2000, https://doi.org/10.1080/00958972.2011.610103
  14. Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach vol.161, pp.None, 2000, https://doi.org/10.1016/j.envpol.2011.10.026
  15. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis vol.219, pp.None, 2000, https://doi.org/10.1016/j.jhazmat.2012.03.074
  16. Photolysis of flumequine: Identification of the major phototransformation products and toxicity measures vol.88, pp.5, 2012, https://doi.org/10.1016/j.chemosphere.2012.03.047
  17. Chemically modified polymeric filtration membranes for the selective elimination of active pharmaceutical ingredients from water vol.24, pp.10, 2013, https://doi.org/10.1002/pat.3154
  18. Can ion mobility mass spectrometry and density functional theory help elucidate protonation sites in 'small' molecules? vol.27, pp.21, 2000, https://doi.org/10.1002/rcm.6700
  19. Spectroscopic, thermal analyses, structural and antibacterial studies on the interaction of some metals with ofloxacin vol.1047, pp.None, 2000, https://doi.org/10.1016/j.molstruc.2013.04.076
  20. Synthesis, Characterization, DFT Modeling and Antimicrobial Studies on the Ti(IV), Y(III) and Ce(IV) Ofloxacin Solid Complexes vol.57, pp.5, 2000, https://doi.org/10.5012/jkcs.2013.57.5.574
  21. Salting-out induced liquid–liquid microextraction based on the system of acetonitrile/magnesium sulfate for trace-level quantitative analysis of fluoroquinolones in water, food and biological m vol.6, pp.17, 2014, https://doi.org/10.1039/c4ay01080a
  22. Spectroscopic Properties of Quercetin in AOT Reverse Micelles vol.35, pp.3, 2000, https://doi.org/10.5012/bkcs.2014.35.3.828
  23. The Effect of Some Fluoroquinolone Family Members on Biospeciation of Copper(II), Nickel(II) and Zinc(II) Ions in Human Plasma vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190812194
  24. Quinolone Antibacterials: Commentary and Considerations Regarding UV Spectra and Chemical Structure vol.61, pp.4, 2000, https://doi.org/10.1515/amma-2015-0084
  25. In vivo and in vitro taste masking of ofloxacin and sustained release by forming interpenetrating polymer network beads vol.22, pp.1, 2017, https://doi.org/10.3109/10837450.2015.1131719
  26. Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate vol.38, pp.None, 2017, https://doi.org/10.1016/j.ultsonch.2017.03.044
  27. Photocatalytic degradation of norfloxacin and its intermediate degradation products using nitrogen‐doped activated carbon–CuS nanocomposite assisted by visible irradiation vol.32, pp.9, 2000, https://doi.org/10.1002/aoc.4418
  28. A Supramolecular Approach for Enhanced Antibacterial Activity and Extended Shelf-life of Fluoroquinolone Drugs with Cucurbit[7]uril vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-32312-6
  29. Adsorption of Quinolone Antibiotics to Goethite under Seawater Conditions: Application of a Surface Complexation Model vol.53, pp.3, 2019, https://doi.org/10.1021/acs.est.8b04853
  30. The complexation of levofloxacin hemihydrate with divalent metal ions in aqueous medium at variable temperatures: Combined UV-Visible spectroscopic and DFT studies vol.344, pp.None, 2021, https://doi.org/10.1016/j.molliq.2021.117916