References
- J. Antimicrobial Chemotherapy v.37 no.Suppl. A Mizuki, Y.;Fujiwara, I.;Yamaguchi, T.
- Acta Chemica Scandinavica v.51 Snaz-Nebot, V.;Valls, I.;Barbero, D.;Barbosa, J.
- Int. J. Pharm. v.149 Barbosa, J.;Berges, R.;Toro, I.;Sanz-Nebot, V.
- Clin. Pharmacokinetics v.14 Neuman, M.
- Pharm. Res. v.11 Yu, X.;Zipp, G. L.;Davidson, W. R.
- J. Pharm. Sci. v.79 Takacs-Novak, K.;Noszal, B.;Hermecz, I.;Kereszturi,G.;Podanyi, B.;Szasz, G.
- The Quinolones Smith, J. T.;Lewin, C. S.;Andriole, V. T.(Ed.)
- Photochem. Photobiol. v.71 Park, H. R.;Lee, H. C.;Kim, T. H.;Lee, J. K.;Yang, K.Y.;Bark, K. M.
- Bioinorg. Chem. v.9 Timmers, K.;Sternglanz, R.
- Photochem. Photobiol. v.64 Martinez, L.;Bilski, P.;Chignell, C. F.
- The Determination of Ionization Constants (3rd Ed.) Albert, A.; Serjeant, E. P.
- Proc. Natl. Acad. Sci. USA, v.89 Pala, G.;Valisena, S.;Ciarrocchi, G.;Gatto, B.;Palumbo, M.
- J. Chrom. A. v.668 Bazile-Pham Khac, S.;Moreau, N. J.
- Photochem. Photobiol. v.62 Ferguson, J.
- Biochem. Biophys. Res. Commun. v.44 Slater, J.;Mildvan, A.;Loeb, L.
- J. Biol. Chem. v.248 Springgate, C.;Mildvan, A.;Abramson, R.;Engle, J.;Loeb, L.
- Biochem. Biophys. Res. Commun. v.53 Valenzuela, P.; Morris, R.; Faras, A.; Levinson, W.; Rutter, W.
- J. Am. Chem. Soc. v.85 Hermans, Jr, J.;Leach, S. J.;Scheraga, H. A.
- J. Am. Chem. Soc. v.73 Elderfield, R. D.;Siegel, M. J.
- Int. J. Pharmacol. v.83 Ross, D. L.;Riley, C. M.
- J. Phys. Chem. v.72 Hetzer, H. B.;Robinson, R. A.;Bates, R. G.
- Electrochim. Acta v.17 Enea, D.;Honughossa, K.;Berthon, G.
- Int. J. Pharm. v.22 Bailey, A. J. G.;Cole, A.;Goodfield, J.;May, P. M.;Dreyfuss,M. E.;Midgley, J. M.;Williams, D. R.
- Anal. Chimi. Acta v.90 Jimenez Sanchez, J. C.;Munoz Leyva, J. A.;Roman Ceba, M.
- Int. J. Pharm. v.93 Ross, D. L.;Riley, C. M.
- Inor. Chim. Acta v.125 Behrens, N.;Mendoza-Diaz, G.
- Int. J. Pharm. v.87 Ross, D. L.;Riley, C. M.
Cited by
- Spectroscopic Properties of Fluoroquinolone Antibiotics in Water-methanol and Water-acetonitrile Mixed Solvents vol.75, pp.3, 2000, https://doi.org/10.1562/0031-8655(2002)075<0237:spofai>2.0.co;2
- Photochemical Reaction of Nalidixic Acid in Methanol vol.24, pp.11, 2000, https://doi.org/10.5012/bkcs.2003.24.11.1618
- Spectroscopic studies on the interaction of ofloxacin with metals vol.691, pp.1, 2004, https://doi.org/10.1016/j.molstruc.2003.11.053
- Photophysics and Photochemistry of Nalidixic Acid vol.82, pp.1, 2000, https://doi.org/10.1562/2005-04-11-ra-488
- Quenching of Ofloxacin and Flumequine Fluorescence by Divalent Transition Metal Cations vol.27, pp.12, 2006, https://doi.org/10.5012/bkcs.2006.27.12.2002
- Synthesis, Crystal Structures and Photoluminescence Properties of Two 2D Coordination Polymer Compounds with Drug Ligand Enoxacin vol.24, pp.7, 2000, https://doi.org/10.1002/cjoc.200690171
- Fluorescence Quenching of Norfloxacin by Divalent Transition Metal Cations vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1573
- Sorption and transport of acetaminophen, 17α-ethynyl estradiol, nalidixic acid with low organic content aquifer sand vol.41, pp.10, 2000, https://doi.org/10.1016/j.watres.2007.01.057
- Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release vol.138, pp.3, 2000, https://doi.org/10.1016/j.jconrel.2009.05.027
- Syntheses, crystal structures of Ni(II), Ag(I)-enoxacin complexes, and their antibacterial activity vol.63, pp.18, 2000, https://doi.org/10.1080/00958972.2010.507811
- Electrospray tandem quadrupole fragmentation of quinolone drugs and related ions. On the reversibility of water loss from protonated molecules : Mass spectrometry of quinolone drugs vol.24, pp.22, 2010, https://doi.org/10.1002/rcm.4769
- Spectroscopic Properties of Quercetin-3-O-rhamnoside and Quercetin-3-O-rutinoside in Aerosol-OT Reverse Micelles vol.32, pp.3, 2000, https://doi.org/10.5012/bkcs.2011.32.3.981
- Electrochemical investigation and DNA-binding studies of pefloxacin-metal(II/III) complexes vol.64, pp.19, 2000, https://doi.org/10.1080/00958972.2011.610103
- Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach vol.161, pp.None, 2000, https://doi.org/10.1016/j.envpol.2011.10.026
- Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis vol.219, pp.None, 2000, https://doi.org/10.1016/j.jhazmat.2012.03.074
- Photolysis of flumequine: Identification of the major phototransformation products and toxicity measures vol.88, pp.5, 2012, https://doi.org/10.1016/j.chemosphere.2012.03.047
- Chemically modified polymeric filtration membranes for the selective elimination of active pharmaceutical ingredients from water vol.24, pp.10, 2013, https://doi.org/10.1002/pat.3154
- Can ion mobility mass spectrometry and density functional theory help elucidate protonation sites in 'small' molecules? vol.27, pp.21, 2000, https://doi.org/10.1002/rcm.6700
- Spectroscopic, thermal analyses, structural and antibacterial studies on the interaction of some metals with ofloxacin vol.1047, pp.None, 2000, https://doi.org/10.1016/j.molstruc.2013.04.076
- Synthesis, Characterization, DFT Modeling and Antimicrobial Studies on the Ti(IV), Y(III) and Ce(IV) Ofloxacin Solid Complexes vol.57, pp.5, 2000, https://doi.org/10.5012/jkcs.2013.57.5.574
- Salting-out induced liquid–liquid microextraction based on the system of acetonitrile/magnesium sulfate for trace-level quantitative analysis of fluoroquinolones in water, food and biological m vol.6, pp.17, 2014, https://doi.org/10.1039/c4ay01080a
- Spectroscopic Properties of Quercetin in AOT Reverse Micelles vol.35, pp.3, 2000, https://doi.org/10.5012/bkcs.2014.35.3.828
- The Effect of Some Fluoroquinolone Family Members on Biospeciation of Copper(II), Nickel(II) and Zinc(II) Ions in Human Plasma vol.19, pp.8, 2014, https://doi.org/10.3390/molecules190812194
- Quinolone Antibacterials: Commentary and Considerations Regarding UV Spectra and Chemical Structure vol.61, pp.4, 2000, https://doi.org/10.1515/amma-2015-0084
- In vivo and in vitro taste masking of ofloxacin and sustained release by forming interpenetrating polymer network beads vol.22, pp.1, 2017, https://doi.org/10.3109/10837450.2015.1131719
- Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate vol.38, pp.None, 2017, https://doi.org/10.1016/j.ultsonch.2017.03.044
- Photocatalytic degradation of norfloxacin and its intermediate degradation products using nitrogen‐doped activated carbon–CuS nanocomposite assisted by visible irradiation vol.32, pp.9, 2000, https://doi.org/10.1002/aoc.4418
- A Supramolecular Approach for Enhanced Antibacterial Activity and Extended Shelf-life of Fluoroquinolone Drugs with Cucurbit[7]uril vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-32312-6
- Adsorption of Quinolone Antibiotics to Goethite under Seawater Conditions: Application of a Surface Complexation Model vol.53, pp.3, 2019, https://doi.org/10.1021/acs.est.8b04853
- The complexation of levofloxacin hemihydrate with divalent metal ions in aqueous medium at variable temperatures: Combined UV-Visible spectroscopic and DFT studies vol.344, pp.None, 2021, https://doi.org/10.1016/j.molliq.2021.117916