DOI QR코드

DOI QR Code

Theoretical Studies on Gas-Phase Reactions of Negative Ions with Alkyl Nitrites


Abstract

Gas-Phase reactions of methyl and ethyl nitrites with anionic nucleophiles of SH-, F- and OH- are investigated theoretically at the MP2/6-311+G* level. The SN2 processes are all highly exothermic and proceed with a typ-icaI double-weIl reaction coordinate profile. The elimination reactions of methyl nitrite with SH- and F- are double-well energy surface processes,with stabilizedproduct complexes of NO-...H2S and NO-...HF, pro-ceeding by an E1 cb-like E2 mechanism. The $\beta-elimination$ of ethyl nitrite is an E2 type process. The $\alpha-elimi-nation$ reactions of methyl and ethyl nitrites with OH- have triple-well energy profiles of Elcb pathway with an $\alpha-carbanion$ intermediate which is stabilized bythe vicinal $nc\alpha-{\sigma}*o-N$ charge transfer interactions. CompIex-ation ofmethyl carbanion with HF seems to provide a stable intermediate within a triple-well energy profile of El cb channel in the reaction of F- with methyl nitrite.

Keywords

References

  1. Advanced Organic Chemistry(2nd ed.) March, J.
  2. J. Org. Chem. v.62 Carcia-Rio, L.;Leis, J. R.;Iglesias, E.
  3. J. Chem. Soc., Perkin trans. 2 Garcia-Rio, L.;Iglesias, E.;Leis, J. R.;Rena, M. E.;Rios, A.
  4. J. Am. Chem. Soc. v.103 King, G. K.;Maricg, M. M.;Biobaum, V. M.;DePuy, C. H.
  5. Int. J. Mass Spectrom. Ion Phys. v.27 McMahon, T. B.;Farid, R.
  6. Int. J. Mass Spectrom, Ion Phys. v.19 McAllister, T.;Pitman, P.
  7. Adv. Mass Spectrom. v.8 Noest, A. J.;Nibbering, N. M. M.
  8. Gaussian 98, Revision A.6. Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Scuseria, G. E.;Robb, M. A.;Cheeseman, J. R.;Zakrzewski, V. G.;Montgomery, J. A., Jr.;Stratmann, R. E.;Burant, J. C.;Dapprich, S.;Millam, J. M.;Daniels, A. D.;Kudin, K. N.;Strain, M. C.;Farkas, O.;Tomasi, J.;Barone, V.;Cossi, M.;Cammi, R.;Mennucci, B.;Pomelli, C.;Adamo, C.;Clifford, S.;Ochterski, J.;Petersson, G. A.;Ayala, P. Y.;Cui, Q.;Morokuma, K.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Foresman, J. B.;Cioslowski, J.;Ortiz, J. V.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Gomperts, R.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham, M. A.;Peng, C. Y.;Nanayakkara, A.;Gonzalez, C.;Challacombe, M.;Gill, P. M. W.;Johnson, B.;Chen, W.;Wong, M. W.;Andres, J. L.;Gonzalez, C.;Head-Gordon, M.;Replogle, E. S.;Pople, J. A.
  9. Chem. Rev. v.88 Reed, A. E.;Curties, L. A.;Weinhold, F.
  10. Structural Theory of Organic Chemistry Epiotis, N. D.;Cherry, W. R.;Shaik, S.;Yates, R.;Bernardi, F.
  11. J. Chem. Soc. Faraday Trans. 2 v.81 Musso, G. F.;Figari, G.;Magnasco, V.
  12. J. Chem. Phys. v.94 Curties, L. A.;Raghavachari, K.;Trucks, G. W.;Pople, J. A.
  13. J. Chem. Phys. v.103 Curtiss, L. A.;Raghavachari, K.;Pople, J. A.
  14. J. Chem. Phys. v.98 Curtiss, L. A.;Raghavachari, K.;Pople, J. A.
  15. J. Am. Chem. Soc. v.114 Houk, K. N.;Gustabson, S. M.;Black, K. A.
  16. J. Comput. Chem. v.16 Lee, I.;Kim, C. K.;Lee, B. S.
  17. J. Phys. Chem. A v.101 Lee, J. K.;Kim, C. K.;Lee, I.
  18. The PMO Theory of Organic Chemistry Dewar, M. J. S.;Dougherty, R. C.
  19. Acc. Chem. Res. v.18 Scheiner, S.
  20. J. Am. Chem. Soc. v.117 Bichelhaupt, F. M.;Buisman, G. J. H.;de Koning, L. J.;Nibbering, N. M. M.;Baerends, E. J.
  21. Reactivity in Organic Chemistry Klumpp, G. W.