DOI QR코드

DOI QR Code

Photoluminescence and Photoluminescence Excitation from Porous Silicon Carbide


Abstract

The dependence of photoluminescence (PL) and photoluminescence itation (PLE) on preparation condi-tions and the aging of porous silicon carbide (PSC) have been investigatted. The fiber size of the material pre-pared under dark-current mode, labele d DCM, was larger than that of the photoassisted (PA)process.The intensity of the PL spectrum for the PA condition was higher than that of the DCM condition. The PA condition giving small fiber size exhibited amore prominent high-energy component but the emission bands of both con-ditionsobserved were rather similar. The origin of the PL may have played an importantrole in the surface defect center introduced by the reaction conditions ofHFatthe surface of the silicon carbide. Selective excita-tion of the PL bandsusingdifferent excitation wavelengths has been used to identify distinct componentswith-in the PL bandwidth. Two main PL bands with peak wavelength of494 and534 nm were clearly resolved. On the other hand, selectivc emission of the PLEbands using different emission wavelengths has been used to identify distinct components within the PLE bandwidth. The higher energy band with peak wavelength of 338 nm and the lower energy bands involving 390,451 and 500 nm were clearly resolved. According to the pro-ionged aging in air, PL spectra appearedasone band, This emission probably originated from states localized to the band-to-band recombination due to the oxidation on the crystallite surface.

Keywords

References

  1. Appl. Phys. Lett. v.62 no.22 Shor, J. S.;Grimberg, I.;Weiss, B. Z.;Kurtz, A. D.
  2. IEEE Trans. Electron Devices v.40 Bhatnagar, M.;Baliga, B. J.
  3. Proc. IEEE v.79 Trew, R. J.;Tan, J.;Mock, P. M.
  4. Appl. Phys. Lett. v.64 no.2 Matsumoto, P.;Takahashi, J.;Tamaki, T.;Futagi, T.;Mimu, H.
  5. J. Appl. Phys. v.70 Canham, L. T.;Houlton, M. R.;Leong, W. Y.;Pickering, C.;Keen, J. M.
  6. Appl. Phys. Lett. v.60 Shin, S.;Tsai, C.;Li, K. H.;Jung, K. H.;Campbell, J. C.;Kwong, D. L.
  7. Appl. Phys. Lett. v.61 Petrova-Koch, V.;Muschik, T.;Kux, A.;Meyer, B. K.;Koch, F.;Lehmann, V.
  8. Phys. Rev. Lett. v.75 Bechstedt, F.;Kackell, P.
  9. Solid State Commun. v.106 no.4 Liu, R.;Yang, B.;Fu, Z.;He, P.;Ruan, Y.
  10. Semiconductors v.29 no.12 Danishevskii, A. M.;Shuman, V. B.;Rogachev, A. Y.;Ivanov, P. A.
  11. Jpn. J. Appl. Phys. v.35 no.10 Kitabatake, M.;Greene, J. E.
  12. Phys. Rev. v.127 Patrick, L.
  13. Appl. Phys. Lett. v.66 no.17 Konstantinov, A. O.;Henry, A.;Harris, C. I.;Janzen, E.
  14. Appl. Phys. Lett. v.63 Weng, Y. M.;Fan, Zh. N.;Zong, X. F.
  15. Appl. Phys. Lett. v.61 Collins, R. T.;Tischler, M. A.;Stathis, J. H.
  16. Appl. Phys. Lett. v.60 Tischler, M. A.;Collins, R. T.;Stathis, J. H.;Tsang, J. C.
  17. Solid State Commun. v.81 Brandt, M. S.;Fuchs, H. D.;Stuzmann, M.;Weber, J.;Cardona, M.
  18. Semiconductors v.31 no.8 Korsunskaya, N. E.;Torchinskaya, T. V.;Dzhumaev, B. R.;Khomenkova, L. Yu.;Bulakh, B. M.
  19. Appl. Phys. Lett. v.65 Zoubir. N. H.;Vergnat, M.;de Donato, Ph.
  20. Appl. Phys. Lett. v.60 Tsai, C.;Li, K. H.;Kinosky, D. S.;Qian, R. Z.;Hsu, T. C.;Irby, J. T.

Cited by

  1. Ultraviolet Photoluminescence from 4H-SiC Nanocrystalline Films Deposited on Silicon Substrate vol.17, pp.3, 2000, https://doi.org/10.1557/jmr.2002.0080
  2. Preparation of Highly Flexible SiC Nanowires by Fluidized Bed Chemical Vapor Deposition vol.21, pp.7, 2000, https://doi.org/10.1002/cvde.201507171