DOI QR코드

DOI QR Code

The Analytic Gradient with a Reduced Molecular Orbital Space for the Equation-of-Motion Coupled-Cluster Theory: Systematic Study of the Magnitudes and Trends in Simple Molecules


Abstract

The analytic gradient method for the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) energy has been extended to employ a reduced molecular orbital (MO) space. Not only the innermost core MOs but also some of the outermost virtua l MOs can be dropped in the reduced MO space, and a substantial amount of computation time can be reduced without deteriorating the results. In order to study the magnitudes and trends of the effects of the dropped MOs, the geometries and vibrational properties of the ground and excited states of BF, CO, CN, N2, AlCl, SiS, P2, BCl, AIF, CS, SiO, PN and GeSe are calculated with different sizes of molecular orbital space. The 6-31 G* and the aug-cc-pVTZ basis sets are employed for all molecules except GeSc for which the 6-311 G* and the TZV+f basis sets are used. It is shown that the magnitudes of the drop-MO effects are about $0.005\AA$ in bond lengths and about 1% on harmonic frequencies and IR intensities provided that the dropped MOs correspond to (1s), (1s,2s,2p), an (1s,2s,2p,3s,3p) atomic orbitals of the first, the second, and the third row atoms, respectively. The geometries and vibrational properties of the first and the second excited states of HCN and HNC are calculated by using a drastically reduced virtual MO space as well as with the well defined frozen core MO space. The results suggest the possibility of using a very smalI MO space for qualitative study of valence excited states.

Keywords

References

  1. J. Quantum Chem. Symp. v.11 Monkhorst, H. J.
  2. Chem. Phys. Lett. v.164 Geertsen, J.;Rittby, M.;Bartlett, R. J.
  3. J. Chem. Phys. Lett. v.98 Stanton, J. F.;Barlett, R. J.
  4. J. Chem. Phys. v.99 Stanton, J. F.
  5. J. Chem. Phys. v.100 Stanton, J. F.;Gauss, J.
  6. J. Chem. Phys. v.101 Stanton, J. F.;Huang, C.-M.;Szalay, P. G.
  7. J. Chem. Phys. v.105 Watts, J. D.;Gwaltney, S. R.;Bartlett, R. J.
  8. J. Chem. Phys. v.103 Stanton, J. F.;Gauss, J.;Ishikawa, N.;Head-Gordon, M.
  9. J. Chem. Phys. v.103 Stanton, J. F.;Gauss, J
  10. Chem. Phys. Lett. v.248 Gwaltney, S. T.;Nooijen, M.;Bartett, R. J.
  11. J. Chem. Phys. v.110 Gwaltney, S. R.;Barlett, R. J.
  12. J. Chem. Phys. v.107 Purvis, G. D.;Bartell, R. J.
  13. J. Phys. Chem. v.93 Bartlett, R. J.
  14. J. Chem. Phys. Lett. v.107 Baeck, K. K.;Watts J. D.;Bartlett, R. J.
  15. J. Chem. Phys. v.109 Baeck, K. K.;Bartlett, R. J.
  16. J. Chem. Phys. v.112 Yoon, J.;Kim, K. S.;Baeck, K. K.
  17. J. Phys. Chem. A v.103 Baeck, K. K.;Choi, H.;Iwata, S.
  18. J. Chem. Phys. v.112 Baeck, K. K.
  19. J. Chem. Phys. v.87 Scheiner, A. C.;Scuseria, G. E.;Rice, J. E.;Lee, T. J.;Schaefer Ⅲ, H. F.
  20. Chem. Phys. Lett. v.153 Gauss, J.;Crener, D.
  21. Chem. Phys. Lett. v.153 Truck, G. W.;Watts, J. D.;Salter, E. A.;Bartlett, R. J.
  22. J. Chem. Phys. v.90 Salter, E. A.;Trucks, G. W.;Bartlett, R. J.
  23. J. Chem. Phys. v.95 Gauss, J.;Stanton, J. F.;Bartlett, R. J.
  24. J. Chem. Phys. v.94 Rendell, A. P.;Lee, T. J.
  25. Chem. Phys. Lett. v.200 Watts, J. D.;Gauss, J.;Bartlett, R. J.
  26. J. Chem. Phys. v.97 Lauderdale, W. J.;Stanton, J. F.;Gauss, J.;Watts, J. D.;Bartett, R. J.
  27. J. Chem. Phys. v.98 Watts, J. D.;Gauss, J.;Bartlett, R. J.
  28. J. Chem. Phys. v.49 Gerratt, J.;Mills, I. M.
  29. Adv. Quantum Chem. v.23 Gauss, J.;Cremer, D.
  30. J. Chem. Phys. v.56 Hehre, W. J.;Ditchfield, R.;Pople, J. A.
  31. Theor. Chim. Acta v.28 Hariharan, P. C.;Pople, J. A.
  32. J. Chem. Phys. v.77 Francl, M. M.;Petro, W. J.;Hehre, W. J.;Binkley, J. S.;Gordon, M. S.;DeFrees, D. J.;Pople, J. A.
  33. J. Chem. Phys. v.103 Curtiss, L. A.;McGrath, M. P.;Blandear, J-P.;Davis, N. E.;Binning Jr. R. C.;Radom. L.
  34. J. Chem. Phys. v.90 Dunning Jr., T. H.
  35. J. Chem. Phys. v.98 Woon, D. E.;Dunning, Jr., T. H.
  36. J. Chem. Phys. v.100 Schafer, A.;Huber, C.;Ahlrichs, R.
  37. Molecular Spectra and Molecular Suructure v.3;4 Herzberg, G.
  38. J. Chem. Phys. v.100 Stanton, J. F.;Gauss, J.

Cited by

  1. The Construction of Semi-diabatic Potential Energy Surfaces of Excited States for Use in Excited State AIMD Studies by the Equation-of-Motion Coupled-Cluster Method vol.24, pp.6, 2000, https://doi.org/10.5012/bkcs.2003.24.6.712
  2. Theoretical study of low-lying excited states of X2CY (X?=?F, Cl; Y?=?O, S) using the equation-of-motion coupled-cluster theory vol.103, pp.15, 2000, https://doi.org/10.1080/00268970500083341
  3. A theoretical study of the low-lying excited electronic states of thiocarbonyl chlorofluoride and their dissociation pathways vol.127, pp.23, 2000, https://doi.org/10.1063/1.2805397
  4. Evaluation of the restricted virtual space approximation in the algebraic‐diagrammatic construction scheme for the polarization propagator to speed‐up excited‐state calculations vol.38, pp.17, 2017, https://doi.org/10.1002/jcc.24794