DOI QR코드

DOI QR Code

Evaluation of the Excess Free Energy for Two-Center-Lennard-Jones Liquids Using the Vent Effective Acceptance Ratio


Abstract

A method of calculating the excess Helmholtz free energy from the average of the bent effective acceptance ratio for two-center-Lennard-Jones liquids has been presented. The bent effective acceptance ratio has been newly composed from the acceptan ce ratio for the potential energy difference between a configuration in the Metropolis Monte Carlo procedure and random virtual configuration generated by the separate parallel Monte Carlo procedure and the Boltzmann factor for half the potential energy difference. The excess Helmholtz free energy was calculated directly from the average of the bent effective acceptance ratio through a single Metropolis Monte Carlo run. Because the separate parallel Monte Carlo procedure was used, this method can be applied to molecular dynamics simulations. For two-center-Lennard-Jones liquids, the average of the bent effective acceptance ratio gave better results than use of the modified effective acceptance ratio in the previous work.

Keywords

References

  1. Modern theoretical chemistry, Statistical mechanics A, Equilibrium techniques v.5 Valleau, J. P.;Torrie, G. M.;Berne, B. J.(ed.)
  2. Ann. NY Acad. Sci. v.482 Mezei, M.;Beveridge, D. L.
  3. Fluid Phase Equilibria v.116 Panagiotopoulos, A. Z.
  4. Theory of Liquids Kirkwood, J. G.;Alder, B. J.(ed.)
  5. J. Chem. Phys. v.39 Widom, B. J.
  6. Mol. Phys. v.45 Quirke, N.;Jacucci, G.
  7. Mol. Phys. v.40 Jacucci, G.;Quirke, N.
  8. J. CHem. Phys. v.108 Brilliantov, N. V.;Vallear, J. P.
  9. J. Comput. Phys. v.23 Torrie, G. M.;Valleau, J. P.
  10. Phys. Lett. A v.165 Han, K.-K.
  11. Phys. Rev. E v.54 Han, K.-K.
  12. Bull. Korean Chem. Soc. v.20 Hong, S. D.
  13. Chem. Phys. Lett. v.181 Yoon, B. J.;Hong, S. D.;Jhon, M. S.;Scheraga, H. A.
  14. Chem. Phys. v.108 Hong, S. D.;Yoon, B. J.;Jhon, M. S.
  15. Chem. Phys. Lett. v.273 Hong, S. D.;Yoon, B. J.;Jhon, M. S.
  16. J. Chem. Phys. v.21 Metropolis, N.;Rosenbluth, A. W.;Rosenbluth, M. N.;Teller, A.H.;Teller, E.
  17. Molecular Theory of Gases and Liquids Hirschfelder, J. O.;Curtiss, C. F.;Bird, R. B.
  18. J. Chem. Phys. v.72 Fischer, J.
  19. J. CHem. Phys. v.71 Kohler, F.;Quirke, N.;Perram, J. W.
  20. J. Chem. Phys. v.97 Frantz, D. D.;Freeman, D. L.;Doll, J. D.
  21. Sceince v.267 Cvijovic, D.;Klinowski, J.
  22. Chem. Phys. Lett. v.267 Hong, S. D.;Jhon, M. S.
  23. Mol. Phys. v.28 Adams, D. J.
  24. Mol. PHys. v.75 Hong, S. D.;Yoon, B. J.;Jhon, M. S.

Cited by

  1. Direct Calculation of the Free Energy Using Reduced Boltzmann Factors: Application to Lennard-Jones Fluids and Square-Well Fluids vol.24, pp.9, 2003, https://doi.org/10.5012/bkcs.2003.24.9.1351
  2. Molecular simulation of volume of mixing, Helmholtz free energy of mixing and entropy of mixing in bulk fluid mixtures vol.44, pp.16, 2000, https://doi.org/10.1080/08927022.2018.1498976