DOI QR코드

DOI QR Code

Stoichiometry and Stability of Complexes Formed between 18-Crown-6 as well as Digenzo-18-Crown-6 Ligands and a Few Metal Ions in Some Non-aqueous Binary Systems Using Square Wave Polarography

  • A. Nezhadali, Gh. Rounaghi ;
  • M. Chamasaz
  • Published : 20000700

Abstract

The complexation reaction between Pb2+,TI and Cd2+ions and macrocyclic ligands, 18-crown-6 ( 18C6) and dibenzo- 18-crown-6 (DB 18C6), was studied in dimethylsulfoxide (DMSO)-nitromethane (NM) and dimethyl-formamide (DMF)-nitromethane binary system s by square wave polarography (SWP) technique. The stoichiometry and stability of the complexes were determined by monitoring the shifts in half-waves or peak potentials of the polarographic waves of metal ions against the Iigand concentration. In most cases, the stability constants of complexes increase with increasing amounts of the nitromethane in mixed binary solvents used in this study. The complexes formed between 18C6 and DB18C6 and these metal cations in all cases had a stoichiometry of 1 : 1. The results obtained show that there is an inverse relationship between the formation constant of complexes and the donor number of solvents based on a Gatmann donocity scale and the stability constants show a high sensitivity to the composition of the mixed solvent systems. A linear behavior was observed for variation of log Kf of I8C6 complexes vs the composition of the mixed solvent systems in NM/DMSO and NM/DMF,but a non-linear behavior was observed in the case of DB 18C6 complexes in these binary systems. In most of the systems investigated, the Pb2+ cation forms a more stable complex with the 18C6 than other two cations and the order of selectivity of this Iigand for cations is: Pb2+ > TI+,Cd2+.

Keywords

References

  1. J. Am. Chem. Soc. v.89 Pedersen, C. J.
  2. J. Am. Chem. Soc. v.89 Pedersen, C. J.
  3. Synthetic Multidentate Macrocyclic Compounds Pedersen, C. J.;Izatt, R. M.(ed.);Christensen, J. J.(ed.)
  4. Chem. Rev. v.85 Izatt, R. M.;Bradshaw, J. S.;Nielsen, S. A.;Lamb, J. D.;Christensen, J. J.
  5. Anal. Chem. v.43 Eyal, E.;Rechnitz, G. A.
  6. J. Electroanal. Chem. Interfacial Electrochem. v.44 Ryba, O.;Petranek, J.
  7. Analyst v.117 Seng Rong, S.;Jengshong, S.
  8. Anal. Chem. v.60 Attiyat, A. S.;Christian, G. D.;Xie, R. Y.;Wen, X.;Bratsch, R. A.
  9. Anal. Chem. v.65 Suzuki, K.;Yamada, H.;Sato, K.;Watanbe, K.;Hisamoto, H.;Tobe, Y.;Kobiro, K.
  10. J. Am Chem. Soc. v.111 Pengjing, R. F.;Huang, J. Z.;Chen, Y.
  11. J. Phys. Org. Chem. v.5 Zhihong, C.;Luis, E.
  12. Anal. Chem. v.64 McDowell, W. J.;Case, G. N.;McDonough, J. A.;Bartsch, R. A.
  13. Topics in Current Chemistry Vogtle, F.
  14. Chem. Rev. v.991 Izatt, R. M.;Pawlak, K.;Bradshow, J. S.
  15. J. Phys. Chem. v.77 Kinsinger, J. B.;Tannahill, M. M.;Greenberg, M. S.;Popov, A. I.
  16. Talanta v.43 Rounaghi, Gh.;Eshage, Z.;ghiamati, E.
  17. Polyhedron v.5 Rounaghi, Gh;Popov, A. I.
  18. Inorg. Chem. Acta v.114 Rounaghi, Gh;Popov, A. I.
  19. Polyhedron v.5 Rounaghi, Gh;Popov, A. I.
  20. Talanta v.43 Rounaghi, Gh;Eshaghi, Z.;Ghiamati, E.
  21. Indianal of Chemistry v.38A Rounaghi, Gh.;Milani-Nejad, F.;Taheri, K.
  22. Iran J. Chem. and Chem. Eng. v.17 no.1 Rounaghi, Gh;Hosseini, M. S.;Ghiamati, E.
  23. J. Inorg. Nucl. Chem. v.43 no.5 Rounaghi, Gh;Popov, A. I.
  24. Hoene. Biochem. Pharmacol v.24 Catstch, A.;Harmuth, A. E.
  25. Inorg. Chem. v.29 Izatt, R. M.;Wu, G.;Jiang, W.;Dalley, N. K.
  26. Anal. Chem. v.60 Miller, A. R.;Gustowski, D. A.;Chen, Z.;Gokel, G. W.
  27. J. Solution Chem. v.9 Shamsipur, M.;Rounaghi, Gh.;Popov, A. I.
  28. Talanta v.36 Shamsipur, M.;Esmaeili, A.;Amini, M. K.
  29. Polarography, 2nd Ed. Kolthoff, I. M.;lingane, J. J.
  30. J. Am. Chem. Soc. v.85 Pearon, R. G.
  31. Bull. Chem. Soc. Jpn. v.40 Kodama, M.;Kimura, E.
  32. J. Am. Chem. Soc. v.93 Frensdorff, H. K.
  33. Russian. General Chem. v.68 Chavgun, N. V.;Zaitseva, I. S.;Kabakova, E. N.;Bondarev, N. V.
  34. J. Chem. Soc. Chem. Commun. v.15 Dietrich, B.;Lehn, J. M.;Sauvage, Y. P.