BULLETIN

OF THE

KOREAN CHEMICAL SOCIETY

ISSN 0253-2964 Volume 21, Number 7 BKCSDE 21(7) 665-752 July 20, 2000

Communications

MagtrieveTM: A New Reagent for the Oxidation of Thiols to Disulfides under a Neutral and Anhydrous Condition

Yong-Ho Sun and Kwang-Youn Ko*

Department of Chemistry, Ajou University, Suwon 442-749, Korea Received February 9, 2000

The oxidative conversion of thiols to disulfides is a useful transformation in organic synthesis as well as biochemistry.¹ This oxidation has been carried out using a variety of reagents² including halogens,³ periodate,⁴ calcium hypochlorite,⁵ peroxodisulfate,⁶ *N*-hydroxy-*o*-benzenedisulfonimide,⁷ sodium chlorite,⁸ thallium(III) acetate,⁹ enzyme,¹⁰ CCl₄,¹¹ transition metals such as Fe(III),¹² Cu(II),^{12b} active MnO₂,¹³ potassium ferrate(VI),¹⁴ rhenium catalyst,¹⁵ and tellurite,¹⁶ trichloronitromethane,¹⁷ and Caros acid (H₂SO₅)¹⁸ among others. However, some reagents mentioned above suffer from disadvantages such as incompatibility with certain functional groups, toxic nature of reagents, strong acidic conditions, or nonavailability of reagents.

MagtrieveTM is Dupont's trademark for its magnetically retrievable oxidant based on chromium dioxide (CrO₂).¹⁹ This reagent was first used for the mild oxidation of alcohols.²⁰ Since only the surface of MagtrieveTM is reduced during the oxidation process, this oxidant is still ferromagnetic and can be conveniently removed by magnet, after use. Because MagtrieveTM can be recycled by simple heating in air, this reagent can serve as a mild and environment-friendly oxidant.

We recently reported that MagtrieveTM can be used as an oxidant for the aromatization of 1.4-dihydropyridines to pyridines²¹ and the generation of diphenyldiazomethane from benzophenone hydrazone.²² Our experience with MagtrieveTM prompted us to investigate the possibility of using this reagent as a new oxidant for thiols. In this communication, we report that MagtrieveTM can serve as a new oxidant for the heterogeneous oxidation of thiols to disulfides under a neutral and anhydrous condition, as shown in Table 1.

$$2 \text{ R-SH} \xrightarrow{\text{Magtrieve IM} (CrO_2)}{\text{CHCl}_3, 20^{\circ}\text{C}} \text{ R-S-S-R}$$

The oxidation was performed by stirring a mixture of thiol and MagtrieveTM in chloroform at 20 °C under nitrogen, except for dodecanethiol and benzyl mercaptan. For the aromatic thiols, the oxidation was complete within a few hours. In contrast, the oxidation of aliphatic long-chain thiol such

Table 1. Oxidation ^{ee} of Thiols to Disulfides with	th Magtrieve ¹³¹
---	-----------------------------

 $\frac{\text{Magtrieve}^{TM}(\text{CrO}_2)}{2 \text{ R-SH}}$

$\frac{2 \text{ R-S11}}{\text{CHCI}_{3}, 20 ^{\circ}\text{C}} \qquad $						
Entrie	s Thiols (R-SH)	Time (h)	Yield $(\%)^b$	mp (°C)	Lit. mp (°C)	
1	2-mercaptobenzothiazole	1	91	180-182	183-184°	
2	2.6-(CH ₃) ₂ C ₆ H ₃ SH	6	93	104-105	$105\text{-}106^d$	
3	2.5-(CH ₃) ₂ C ₆ H ₃ SH	3	92	48-49	$46.5\text{-}48^\circ$	
4	C ₆ H ₅ SH	2	92	58-59	59-60	
5	4-BrC ₆ H ₄ SH	1	96	91-92	92-94 [/]	
6	2-mercaptopyridine	1	98	55-57	56-58 ^g	
7	HSCH ₂ CH ₂ OH	2	93	oil	$26-28^{k}$	
8a	n-C11H23CH2SH	120	73'	31-32	$30-31^{j}$	
8b		48^k	99			
9a	PhCH ₂ SH	24	50'	69-70	71 -72 °	
9b		8'	91			
10	1.2-(HSCH ₂) ₂ C ₆ H ₄	2	87	76-77	77 - 78 ^f	
11	8-mercaptomenthone	24	trace"			
12	Ph ₃ CSH	24	trace ^m			

^aAll reactions were conducted at 20 ^aC, using 1 mmol of thiol and 1.51 g of MagtrieveTM in chloroform (20 mL) under nitrogen, unless noted otherwise. ^bYield refers to the pure isolated product. ^c*Ref.* 12a. ^d*Beilstein* E IV **6**. 3125. ^c*Beilstein* E IV **6**. 3171. ^d*Dictionary of Organic Compounds*: Chapman and Hall: London, 6th Ed., 1996. ^c*Ref.* 6. ^b*Beilstein* E IV **1**. 2442. ^cThe rest is the starting thiol. ^d*Beilstein* E IV **1**, 1853. ^kin refluxing toluene. ^fin refluxing chloroform. ^mInertness of tertiary thiols to oxidation may be ascribed to the poor absorption on MagtrieveTM surface due to the unfavorable steric strain.²³

as dodecanethiol required higher reaction temperature and longer time (entry 8). The higher reactivity of aromatic thiols toward MagtrieveTM may be ascribed to the more acidic nature of aromatic thiols.²³ Tertiary thiols (entries 11, 12) were inert to oxidation. Although MagtrieveTM is known to oxidize unactivated alcohols to carbonyl compounds in refluxing toluene,²⁰ the chemoselective oxidation of thiol containing a primary hydroxyl group was achieved at 20 °C (entry 7).

Oxidation of 2-mercaptopyridine (entry 6) is representative. To a solution of 2-mercaptopyridine (110 mg, 1.0 mmol) in chloroform (20 mL) was added MagtrieveTM (1.51 g) all at once at 20 °C. The mixture was stirred under nitrogen atmosphere for 1 h, until TLC showed the absence of the starting material (R_f of thiol = 0.15, R_f of disulfide = 0.55 in EtOAc : hexanes = 1 : 1). A magnet was placed on one side of the flask and the solution was decanted. The oxidant was rinsed with EtOAc (3 × 20 mL) and this solution was dried with Na₂SO₄ and concentrated to give 108 mg (98%) of the pure product (¹H NMR and TLC) as a pale yellow solid, mp 55-57 °C (Lit.⁶ mp 56-58 °C).

A previous study of the oxidation of thiols by transition metal oxides showed that disulfides are formed by the coupling of thiyl radicals (RS•).²³ Similar mechanism for thiol oxidation on MagtrieveTM can be suggested as follows:^{20,24}

$$RSH \cdot Cr^{W}O_2 \longrightarrow RS^{\bullet} + HOCr^{W}O_2$$

$$2 RS^{\bullet} RS^{\bullet} RS^{\bullet}SR$$

In conclusion, the easy work-up, the recyclability of the used reagent, the neutral and anhydrous reaction condition, the chemoselectivity, the commercial availability, and high yields make the use of MagtrieveTM attractive for the labscale oxidation of thiols to disulfides.

Acknowledgments. The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998 (BSRI-1998-015-D00186).

References and Notes

 (a) The Chemistry of the Thiol Group, Part 1 and Part 2; Patai, S., Ed.; John Wiley & Sons: London, 1974. (b) Annis, L.; Hargittai, B.; Barany, G. Methods in Enzymology 1997, 289, 198.

- (a) Hudlicky, M. Oxidations in Organic Chemistry, ACS Monograph 186; American Chemical Society: Washington, DC, 1990; pp 250-252. (b) Uemura, S. In Comprehensive Organic Synthesis; Trost, B. M., Editor-in-Chief; Pergamon: Oxford, 1991; Vol. 7, Chapter 6.2.
- (a) Aida, T.; Akasaka, T.; Furukawa, N.; Oae, S. Bull. Chem. Soc. Jpn. 1976, 49, 1441. (b) Wu, X.; Rieke, R. D.; Zhu, L. Synth. Commun. 1996, 26, 191.
- Firouzabadi, H.; Sardarian, A.; Badparva, H. Bull. Chem. Soc. Jpn. 1996, 69, 685.
- (a) Hirano, M.; Yakabe, S.; Fukami, M.; Morimoto, T. Synth. Commun. 1997, 27, 2783. (b) Hirano, M.; Yakabe, S.; Uraoka, N.; Morimoto, T. Org. Prep. Proced. Int. 1998, 30, 360.
- Mohammadpoor-Baltork, I.; Hajipour, A. R.; Mohammadi, H. Bull. Chem. Soc. Jpn. 1998, 71, 1649.
- Barbero, M.; Degani, I.; Fochi, R.; Perracino, P. J. Org. Chem. 1996, 61, 8762.
- Ramadas, K.; Srinivasan, N. Synth. Commun. 1995, 25, 227.
- Uemura, S.; Tanaka, S.; Okano, M. Bull. Chem. Soc. Jpn. 1977, 50, 220.
- Sridhar, M.; Kumara Vadivel, S.; Bhalerao, U. T. Synth. Commun. 1998, 28, 1499.
- Maruyama, T.; Ikeo, T.; Ucki, M. Tetrahedron Lett. 1999, 40, 5031.
- (a) Iranpoor, N.; Zeynizadeh, B. Synthesis 1999, 49. (b) Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A. Synth. Commun. 1998, 28, 1179.
- 13. Firouzabadi, H.; Abbassi, M.; Karimi, B. Synth. Commun. 1999, 29, 2527.
- 14. Delaude, L.; Laszlo, P.J. Org. Chem. 1996, 61, 6360.
- Arterburn, J. B.; Perry, M. C.; Nelson, S. L.; Dible, B. R.; Holguin, M. S. J. Am. Chem. Soc. 1997, 119, 9309.
- Suzuki, H.; Kawato, S-i.; Nasu, A. Bull. Chem. Soc. Jpn. 1992, 65, 626.
- Demir, A. S.; Cigdem Igdir, A.; Mahasneh, A. S. *Tetrahedron* 1999, 55, 12399.
- Movassagh, B.; Lakouraj, M. M.; Ghodrati, K. Synth. Commun. 1999, 29, 3597.
- MagtrieveTM is commercially available from Aldrich Chemical Company.
- 20. Lee, R. A.; Donald, D. S. Tetrahedron Lett. 1997, 38, 3857.
- 21. Ko, K-Y.; Kim, J-Y. Tetrahedron Lett. 1999, 40, 3207.
- 22. Ko, K-Y.; Kim, J-Y. Bull. Korean Chem. Soc. 1999, 20, 771.
- 23. Wallace, T. J. J. Org. Chem. 1966, 31, 1217.
- Parida, K. M.; Samal, A.; Das, N. N. J. Colloid Interface Sci. 1998, 197, 236.