DOI QR코드

DOI QR Code

Organic-Inorganic nani-Composite of PMMA-Forsterite Doped with $Eu^{+3}$


Abstract

Drying-step in sol-gel processing was bypassed by exchanging alcoholic solvent in forsterite alcogel directly with MMA. By in-situ polymerization of the MMA, organic-inorganic nano-composite of PMMA-forsterite was prepared. As porous nature of inorganic networks in the gel was preserved and fixated in the composite, spherical morphology of PMMA was resulted. The PMMA-forsterite composite was optically transparent, machinable,mechanically sustainable, and thermally more stable than pristine PMMA. When doped with $Eu^{+3}$, inorganic moiety in the composite provided site environment that is very different from that in pristine PMMA. Prominent $^{5}D_0$$^{7}F_0$ transition at 578 nm, broken degeneracy in $^{5}D_0$$^{7}F_1$ and $^{5}D_0$$^{7}F_2$ transitions suggested that $Eu^{+3}$ was exclusively doped in the inorganic moiety of the composite, which had lower symmetry than the organic counterpart.

Keywords

References

  1. Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing Brinker, C. J.;Scherer, G. W.
  2. Polymer Science and Technology v.8 no.3 Park, D. G.
  3. Polym. Prepr. v.26 no.300 Wilkes, G. L.;Orler, B.;Huang, H.
  4. J. Non-Cryst. Solids v.73 no.681 Schmidt, H.
  5. Chem. Mater. v.8 no.1667 Wen, J.;Wikes, G. L.
  6. Chem. Mater. v.7 no.2010 Schubert, U.;Husing, N.;lorenz, A.
  7. Sol-Gel Optics Schmidt, H.;Klein, L. C.(Ed.)
  8. Polymer v.33 no.7 Landry, C. J. T.;Coltrain, B. K.;Wesson, J. A.;Zumbulya-dis, N.;Lipper, J. L.
  9. Polymer v.32 no.4 Wung, C. J.;pang, Y.;Prasad, P. N.;Karasz, F. E.;
  10. Chem. Mater. v.5 no.839 Ellsworth, M. W.;Novak, B. M.
  11. Chem. Mater. v.8 no.3 Jackson, C. L.;Bauer, B. J.;Nakatani, A. I.;Barnes, J. D.
  12. Chem. Mater. v.6 no.282 Novak, B. M.;Auerbach, D.;Verrier, C.
  13. J. Non-Cystal. Sol-ids v.170 no.243 Li, X.;King, T. A.;Pallikari-Viras, F.
  14. Sol-Gel Optics Klein, L. C.(Ed.)
  15. Bull. Korea Chem. Soc. v.19 no.5 Kang, J.;Park, S. H.;Kwon, H. Y.;Park, D. G.;Kim, S. S.;kweon, H. J.;Nam, S. S.
  16. Chem. Mater. v.5 no.518 Park, D. G.;Burlitch, J. M.;Geray, R. F.;Dieckmann, R.;Barber, D. B.;Pollock, C. R.
  17. J. Non-Crystalline Solids v.99 no.359 Assink, R. A.;kay, B. D.
  18. Chem. Mater. v.5 no.525 Yeager, K. E.;Burlitch, J. M.;Loehr, T. M.
  19. MRS Bulletin v.8 no.22 Schaefer, D. W.
  20. Chem. Rev. v.89 no.765 Gesser, H. D.;Goswami, P. C.
  21. J. Phys. Chem. v.36 no.52 Kistler, S. S.
  22. Powder Surface Area and Poros-ity,($3^{rd}$Ed.) Lowell, S.;Shields, J. E.
  23. Adsorption, Surface Area and Porosity,($2^{nd}$Ed.) Gregg, S. J.;Sing, K. S. W.
  24. J. Non-Crystalline Solids v.93 no.17 Woignier, T.;Phalippou, J.
  25. J. Thermal Analysis v.46 no.55 Beaudry, C. L.;Klein, L. C.;McCauley, R. A.
  26. Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing Brinker, C. J.;Scherer, G. W.
  27. Philips Res. Repts. v.21 no.368 Blasse, G.;Bril, A.
  28. Philips Technical Review v.10 no.304 Blasse, G.;Bril, A.