DOI QR코드

DOI QR Code

In situ Structural Investigation of Iron Phthalocyanine Monolayer Adsorbed on Electrode Surface by X-ray Absorption Fine Structure


Abstract

Structural changes of an iron phthalocyanine (FePC) monolayer induced by adsorption and externally applied potential on high area carbon surface have been investigated in situ by iron K-edge X-ray absorption fine structure (XAFS) in 0.5 M $H_2S0_4.$ Fine structures shown in the X-ray absorption near edge structure (XANES) for microcrystalline FePC decreased upon adsorption and further diminished under electrochemical conditions. Fe(II)PC(-2) showed a 1s ${\rightarrow}$ 4p transition as poorly resolved shoulder to the main absorption edge rather than a distinct peak and a weak 1s ${\rightarrow}$ 3d transition. The absorption edge position measured at half maximum was shifted from 7121.8 eV for Fe(lI)PC(-2) to 7124.8 eV for $[Fe(III)PC(-2)]^+$ as well as the 1s ${\rightarrow}$ 3d pre-edge peak being slightly enhanced. However, essentially no absorption edge shift was observed by the 1-electron reduction of Fe(Il)PC(-2), indicating that the species formed is $[Fe(II)PC(-3)]^-$. Structural parameters were obtained by analyzing extended X-ray absorption fine structure (EXAFS) oscillations with theoretical phases and amplitudes calculated from FEFF 6.01 using multiple-scattering theory. When applied to the powder FePC, the average iron-to-phthalocyanine nitrogen distance, d(Fe-$N_p$) and the coordination number were found to be 1.933 $\AA$ and 3.2, respectively, and these values are the same, within experimental error, as those reported ( $1.927\AA$ and 4). Virtually no structural changes were found upon adsorption except for the increased Debye-Wailer factor of $0.005\AA^2$ from $0.003\AA^2.$ Oxidation of Fe(II)PC(-2) to $[Fe(III)PC(-2)]^+$ yielded an increased d(Fe-Np) (1 $.98\AA)$ and Debye-Wailer factor $(0.005\AA^2).$ The formation of $[Fe(II)PC(-3)]^-$, however, produced a shorter d(Fe-$N_p$) of $1.91\AA$ the same as that of crystalline FePC within experimental error, and about the same DebyeWaller $factor(0.006\AA^2)$.

Keywords

References

  1. Spectroelectrochmistry: Thory and Practices For a collection of monographs in the area of in situ appli-cations of spectoscopic techniques to the of ele-trode-eletrolyte interfaces Gale, R.(Ed.)
  2. Modern Techniques for in situ interface Characterization Electrochemical Interfaces Abruna, H. D.(Ed.)
  3. Physical Methods in Chemistry, (2nd ed.) v.1XB Investigations of Surfaces and Interfaces Rossiter, B. W.;Baetzold, R. C. (Eds.)
  4. Chem. Rev. v.90 no.705 Sharpe, L. R.;Heineman, W. R.;Elder, R. C.
  5. J. R. Neth. Chem. Soc. v.99 no.253 Van der Brink, F. ;Barendercht, E.;Visscher, W. Recl.
  6. J .Electroanal. Chem. v.111 no.91 Applyby, A. J.;Savy, M.;Caro, P.
  7. Mat. Chem. Phys. v.22 no.431 Tanaka, A. A.;Fierro, C.;Scherson, D.;Yeager, E.
  8. J .Electrochem. Soc. v.127 no.1506 Zagal, J.;Bindra, P.;Yeager, E.
  9. J .Electroanal. Chem. v.233 no.99 Elzing, A.;van der Putten, A.;Visscher, W.;Barendrecht, E.
  10. J .Electroanal. Chem. v.213 no.217 Mevin, W. A.;Liu, W.;Melnik, M.;Lever, A. B. P.
  11. Langmuir v.6 no.1338 Fierro, C. A.;Mohan, M.;Scherson, D.
  12. J. Am. Chem. Soc. v.113 no.9063 Kim, S.;Bae, I. T.;Sandifer, M.;Ross, P. N.;Carr, R.;Woicik, J.;Antonio, M. R.;Scherson, D. A.
  13. J. Electrochem. Soc. v.142 no.824 Tryk, D. A.;Bae, I. T.;Hu, Y.;Kim, S.;Antonio, M. R.;Scherson, D. A.
  14. Department of Physics, FM-15 UWXAFS Project
  15. Phys. Rev. v.B41 no.8139 Rehr, J. J.;Albers, R. C.
  16. Phys. Rev. Lett. v.69 no.3397 Rehr, J. J;Zabinsky, S. I.;Albers, R. C.
  17. J. Phys. Chem. v.96 no.10898 Martins Alves, M. C.;Dodelet, J. P.;Guay, D.;ladoceur, M.;Tourillon, G.
  18. Phys. Rev. B v.30 no.5596 Wong, J.;Lytle, F. W.;Messmer, R. P.;Maylotte, D. H.
  19. J. Solid State Chem. v.128 no.326 Liu, R. S.;Jang, L. Y.;Chen, J. M.;Tsai, Y. C.;Hwang, Y.D.;Liu, R. G.
  20. J. Electrochem. Soc. v.141 no.L69 Mansour, a. N.;Melendres, C. A.;Pankuch, M.;Briz-zolara, R. A.
  21. J. Am. Chem. Soc. v.98 no.1287 Cramer, S. P.;Eccles, T. K.;Kutzler, F. W.;Hodgson, K. O.
  22. J. Am. Chem. Soc. v.111 no.3182 George, G. N.;Gorbaty, M. L.
  23. Collect Tranv. Chim. Tschoselovaquie v.4 no.213 Kunzl, V.
  24. J. Phys. Chem. v.99 no.10359 Kim, S.;Tryk, D. A.;Bae, I. T.;Sandifer, M.;Carr, R.;Antoio, M. R.;Scherson, D. A.
  25. Acc. Chem. Res. v.26 no.1 Sinfelt, J. H.;Meitzner, G. D.
  26. J. Phys. Chem. v.96 no.1324 Jentys, A.;Haller, G. L.;lercher, J. A.
  27. X-ray Absorption Fone Structure for Catalysts and Sur-faces Iwasawa, Y. (Ed.)
  28. J. Phys. Chem. v.92 no.6902 Fierro, C.;Anderson, A. B.;Scherson, D.
  29. Biochemistry v.18 no.3546 Scheidt, W. R.;Cohen, I. A.;Kastner, M. E.

Cited by

  1. Electrocatalytic Oxidation of Sulfur Dioxide by Iron Phthalocyanine Monolayer in Aqueous Solutions vol.23, pp.12, 2000, https://doi.org/10.5012/bkcs.2002.23.12.1842
  2. Simple and Convenient Design of a Spectroelectrochemical Cell for In Situ XANES Measurements of Adsorbed Species in Transmission Mode vol.26, pp.4, 2000, https://doi.org/10.5012/bkcs.2005.26.4.671
  3. Transition metal and nitrogen doped carbon nanostructures vol.253, pp.23, 2000, https://doi.org/10.1016/j.ccr.2009.03.011
  4. Catalytic Fe-xN Sites in Carbon Nanotubes vol.113, pp.52, 2009, https://doi.org/10.1021/jp810792d
  5. Electronic structure changes in cobalt phthalocyanine due to nanotube encapsulation probed using resonant inelastic X-ray scattering vol.12, pp.33, 2000, https://doi.org/10.1039/c002501a
  6. Electrochemical and nanogravimetric studies of poly(copper phthalocyanine) microparticles immobilized on gold in aqueous solutions vol.19, pp.9, 2015, https://doi.org/10.1007/s10008-015-2770-6
  7. Effect of the N content of Fe/N/graphene catalysts for the oxygen reduction reaction in alkaline media vol.3, pp.48, 2015, https://doi.org/10.1039/c5ta04355g
  8. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature vol.1, pp.11, 2000, https://doi.org/10.1126/sciadv.1500462
  9. Iron Oxide Nanoclusters Incorporated into Iron Phthalocyanine as Highly Active Electrocatalysts for the Oxygen Reduction Reaction vol.10, pp.2, 2000, https://doi.org/10.1002/cctc.201701183
  10. X‐Ray Absorption Spectroscopy Characterizations on PGM‐Free Electrocatalysts: Justification, Advantages, and Limitations vol.31, pp.31, 2000, https://doi.org/10.1002/adma.201805157
  11. Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes vol.398, pp.None, 2000, https://doi.org/10.1016/j.electacta.2021.139263