DOI QR코드

DOI QR Code

Solvent Effect on $Rb^+$ to $K^+$ Iron Mutation: Monte Carlo Simulation Study


Abstract

The solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for $Rb^+$ to $K^+$ mutation in several solvents have been investigated using Monte Carlo simulation (MCS) of statistical perturbation theory(SPT). In comparing the relative free energies for interconversion of one ion pair, $Rb^+$ to $K^+$, in $H_2O$(TIP4P) in this study with the relative free energies of the computer simulations and the experimental, we found that the figure in this study with the relative free energies of the computert simulations and the experimental, we found that the figure in this study is $-5.00\pm0.11$ kcal/mol and those of the computer simulations are $-5.40\pm1.9$, -5.5, and -5.4 kcal/mol. The experimental is -5.1 kcal/mol. There is good agreement among various studies, taking into account both methods used to obtain the hydration free energies and standard deviations. There is also good agreement between the calculated structural properties of this study and the simulations, ab initio and the experimental results. We have explained the deviation of the relationship between the free energy difference and the Onsager dielectric function of solvents by the electron pair donor properties of the solvents. For the $Rb^+$ and $K^+$ ion pair, the Onsager dielectric function of solvents (or solvent permittivity), donor number of solvent and the differences in solvation dominate the differences in the relative free energies of solvation and partition coefficients.

Keywords

References

  1. J. Metal Ions in Solution Burgress. J
  2. Chem. Rev. v.93 Ohtaki, H;Radnai, T
  3. Studies in Physical and Theoretical Chemistry v.12 Ionic Hydration in Chemistry and Biophysics Conway, B. E
  4. Ion Solvation Marcus, Y
  5. Physical Chemistry of Electrolyte Solutions Bathel, J. M;Krienke, H;Kunz, W
  6. Computer Modeling of Chemical Reactions in Enzymes and Solutions Warshel, A
  7. Modern Techniques in Computational Chemistry Clementi, E
  8. Computer Simulation of Liquids Allen, M.P;Tidelsley, D. J
  9. A Comprehensive Approach Quantum Chemical and Statistical Theory of Solution Simkin, B. Y;Sheikhet, I. I
  10. Proc. Natl. Acad. Sci. v.95 Choi, H. S;Suh, S. B;Cho, S. J;Kim, K. S
  11. J. Am. Chem. Soc. v.116 Kim, K. S;Lee, J. Y;Lee, S. J;Ha, H-K;Kim, D. H
  12. Chem. Phys. Lett. v.232 Lee, J. Y;Lee, S. J;Choi, H. S;Cho, S. J;Ha, H-K;Kim, K. S
  13. J. Org. Chem. v.64 Hong, B. H;Lee, J. Y;Cho, S. J;Kim, K. S
  14. Science v.261 Kumpf, R. A;Dougherty, D. A
  15. J. Phys. Chem. A v.103 Cui, C;Kim, K. S;
  16. J. Am. Chem. Soc. v.104 Michaux, G;Reisse, J
  17. Statistical Mechanics Valleau, J. P;Torrie, G. M;Berne, B.J(Ed.)
  18. J. Phys. Chem. v.87 Jorgensen, W. L
  19. J. Chem. Phys. v.70 Rebertus, D. W;Berne, B. J;Chandler, D
  20. J. Am. Chem. Soc. v.107 Mezei, M;Mehrotra, P. K;Beveridge, D. L
  21. J. Am. Chem. Soc. v.107 Chandrasekhar, J;Jorgensen, W. L
  22. Faraday Symp. Chem. Soc. v.17 Postma, J. P. M;Berendsen, H. J. C;Haak, J. R
  23. Comput Chem. v.8 Tembe, B. L;McCammon, J. A
  24. Chem. Rev v.93 Kollman, P. A
  25. Chem. Rev. v.71 Leo, A;Hansch, C;Elkins, D
  26. Substituent Constants for Correlation Analysis in Chemistry and Biology Hansch, C;Leo, A
  27. Determination and Estimation Partition Coefficient Dunn, W. J;Block, J. S;Pearlman, R. S
  28. J. Med. Chem. v.30 Dunn. W. J;Koehler, M. G;Grigoras, S
  29. J. Comput. Chem. v.6 Klopman, G;Namboodiri, K;Schochet, M
  30. BOSS Version 3.8 Jorgensen, W. L
  31. J. Chem. Phys. v.83 Jorgensen, W. L;Ravimohan, C
  32. J. Am. Chem. Soc. v.111 Jorgensen, W. L;Briggs, J. M
  33. Chem. Phys. Lett. v.317 Kim. H-S
  34. Chem. Phys. v.253 Kim, H-S
  35. J. Chem. Phys. v.22 Zwanzig, R. W
  36. Acc. Chem. Res. v.22 Jorgensen, W. L
  37. J. Chem. Soc. Chem. Commun. v.11 Essex, J. W;Reynold, C. A;Richards, W. G
  38. J. Am. Chem. Soc. v.110 Cieplak, P;Kollman, P. A
  39. Chem. Phys. v.129 Jorgensen, W. L;Blake, J. F;Buckner, J. K
  40. J. Phys. Chem. v.90 Jorgensen, W. L
  41. J. Am. Chem. Phys. v.129 Jorgensen, W. L;Tirado-Rives
  42. Solvents and Solvent Effects in Organic Chemistry, 2nd ed. Christian R.
  43. Internal Rotation in Molecules Abraham, R. J;Bretschneider, E;Orville-Thomas, W. J(Ed.)
  44. J. Phys. Chem. v.94 Jorgensen, W. L;Briggs, J. M;Leonor, C. M
  45. J. Phys. Chem. v.94 Aqvist, J
  46. J. Phys. Chem. B v.103 Florian, J;Warshel, A
  47. J. Phys. Chem. B v.103 Babu, C. S;Lim, C
  48. Naturforsh v.41a Migliore, M;Fornili, S. L;Spohr, E;Palinkas, G. K;Heizinger, Z
  49. J. Phys. Chem. v.100 Lee, S. H;Rasaiah, J. C
  50. J. Chem. Phys. v.83 Lybrand, T. P;Kollman, P. A
  51. J. Chem. Phys. v.111 Lee, H. M;Kim, J;Lee, S;Mhin, B. J;Kim, K. S
  52. J. Phys. Chem. B v.103 Chang, T-M;Dang, L. X
  53. J. Phys. Chem. v.85 Rao, M;Berne, B. J
  54. Modern Electrochemistry v.1 Bockris, J. O'M;Reddy, A. K. N
  55. Bull. Korean Chem. Soc. v.14 Chung, J. J;Kim, H-S
  56. ModernAspects of Electrochemistry v.5 Desnoyers, J. E;Jolicoeur, C;Bockris, J. O'M(Ed.);Conway. B. E(Ed.)
  57. Annu. Rep. Progr. Chem. Sect. C v.76 Neilson, G. W;Enderby, J. E
  58. Rep. Progr. Phys. v.44 Enderby, J. E;Neilson, G. W
  59. Comprehensive Treatise v.6 Water. A;Franks. F(Ed.)
  60. J. Chem. Phys. v.74 Mezei, M;Beveridge, D. L

Cited by

  1. Monte Carlo Simulation Study of Solvent Effect on &Dgr;log Ks of Rb+ and K+ Ion to 18-Crown-6 vol.106, pp.44, 2000, https://doi.org/10.1021/jp021190y