DOI QR코드

DOI QR Code

Shock-Tube Study of the Oxidation of Acetaldehyde at High Temperature


Abstract

The combustion characteristics of a mixture of acetaldehyde, oxygen and argon behind a reflected shock wave at temperatures ranging from 1320 to 1897 K at 100 torr were studied. The emission from the OH radical at 306.4 nm and the pressure profile behind the reflected shock were measured to monitor ignition delay time. The ignition delay times were computed from a proposed mechanism of 110 elementary reactions involving 34 species. The simulation and sensitivity analysis confirm that the main channel for oxidation of acetaldehyde at high temperature consists of the Rice-herzfeld mechanism, the decomposition and oxidation of HCO, and the reaction of H with $O_2$.

Keywords

References

  1. Int. J. Chem. Kinet. v.18 Kaiser, E. W;Westbrook, C. K;Pitz, W. J
  2. J. Chem. Phys. v.86 Pugh, S. A;Kim, H. -R;Ross, J.
  3. Combust. Flame. v.82 Cavanagh, J;Cox, R. A;Olson, G
  4. Combust. Flame v.99 Kojima, S
  5. The Combustion Institute In Proceedings of the 16th Symp. (Int.) on Combustion Colket, M. B. Ⅲ;Naeceli, D. W;Glassman, I
  6. Combust. Sci. Tech. v.107 Dagaut, P;Reuillon, M;Voisin, D;Cathinnet, M;McGuinness, M;Simmie, J. M
  7. Combust. Flame v.99 Ranzi, E;Sogaro, A;Gaffuri, P;Pennati, G;Westbrook, C. K;Pitz, W. J
  8. The Combustion Institute In Proceedings of the 16th Symp. (Int.) on Combustion Beeley, P;Criffiths, J. F;Hunt, B. A;Williams, A
  9. Mass. Spectrosc. v.35 Hidaka, Y;Syga, M
  10. Combust. Flame v.106 Kang, J.-G;Ryu J. -C;Choi, E. S;Kang, S. K;Yeo, H. G
  11. Bull. Korean Chem. Soc. v.18 Ryu, J- C;Seo, H;Kang, J. -G;Oh, K. -H
  12. NASA SP-273 Computer Program for Calculation of Complex Chemical Equilbrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations Gordon, S;McBride, B. J
  13. SAND89-8009B Chemkin-Ⅱ:A For tran Chemical Kinetics Package for the Analysis of Gas Phase Shmical Kinetics Kee, R. J;Rupley, F. M;Miller, J. A
  14. KINALC:CHEMKIN Based Program for Kinetic Analysis Turanyl, T
  15. Combust, Flame v.92 Yoon, H. -M;Yeo, H.-G;Yun, S. S;Kim, C. -S;Kang, J.-G
  16. The Foundations of Chemical Kinetics Benson, S. W
  17. The Spectroscopy of Flames Gaydon. A.G
  18. J. Phys. Chem v.89 Hidaka, Y;Takahashi, S;Kawano, H;Suga, M;Gardiner, W. G. Jr.
  19. American Institute of Physis In Proceedings of the 17th Symp.(Int.) on Shock Wave and Shock Tubes Kern, R. D;Singh, H. J;Xie, K
  20. J. Phys. Chem. v.87 Lifshitz, A;Ben-Hamou, H
  21. Combust. Sci. Tech. v.77 Dagaut, P;Boettner, J.-C;Cathonnet. M
  22. Combust. Sci. Tech. v.75 Drake, M.C;Blint, R. J
  23. Combust. Flane v.92 Lee, K. Y;Yang, M. H;Puri, I. K
  24. Combust. Sci. Tech. v.60 Karra, S. B;Gutman, D;Senkan, S. M
  25. Smith, G. P;Golden, D. M;Frenklach, M;Moriarty, N.W;Eiteneer, B;Goldenberg, M;Brwman, C. T;Hanson, R. K;Song, s;Gardiner, W. C. Jr;Lissianski, V. V;Qin, Z
  26. Combust. Flame v.92 Hidaka, Y;Taniguchi, T;Tanaka, H;Kamesawa, T;Inami, K;Kawano, H

Cited by

  1. Experimental Investigation and Numerical Simulation of the Structure of CH3CHO/O2/Ar Flames at Different Equivalence Ratios vol.182, pp.4, 2010, https://doi.org/10.1080/00102200903462813
  2. Investigation of the chemical structures of laminar premixed flames fueled by acetaldehyde vol.36, pp.1, 2017, https://doi.org/10.1016/j.proci.2016.05.030
  3. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor vol.192, pp.None, 2000, https://doi.org/10.1016/j.combustflame.2018.01.048
  4. Kinetic Modeling of NOx Formation and Consumption during Methanol and Ethanol Oxidation vol.191, pp.9, 2019, https://doi.org/10.1080/00102202.2019.1606804