DOI QR코드

DOI QR Code

Crystal Structure of Xenon Encapsulate within Na-A Zeolite


Abstract

The positions of Xe atoms encapsulated in the molecular-dimensioned cavities of fully dehydrated Na-A have been determined. Na-A was exposed to 1050atm of xenon gas at 400 $^{\circ}C$ for seven days, followed by cooling at pressure to encapsulate Xe atoms. The resulting crystal structure of Na-A(7Xe) (a = 12.249(1) $\AA$, $R_1$ = 0.065, and $R_2$ = 0.066) were determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(1) $^{\circ}C$ and 1 atm. In the crystal structure of Na-A(7Xe), seven Xe atoms per unit cell are distributed over four crystallographically distinct positions: one Xe atom at Xe(1) lies at the center of the sodalite unit, two Xe atoms at Xe(4) are found opposite four-rings in the large cavity, and four Xe atoms, two at Xe(2) and others at Xe(3), respectively, occupy positions opposite and between eight- and six-rings in the large cavity. Relatively strong interactions of Xe atoms at Xe(2) and Xe(3) with $Na^+$ ions of four-, eight-, and six-rings are observed:Na(1)-Xe(2) = 3.09(6), Na(2)-Xe(3) = 3.11(2), and Na(3)-Xe(2) = 3.37(8) $\AA$. In each sodalite unit, one Xe atom is located at its center. In each large cavity, six Xe atoms are found, forming a distorted octahedral arrangement with four Xe atoms, at equatorial positions (each two at Xe(2) and Xe(3)) and the other two at axial positions (at Xe(4)). With various reasonable distances and angles, the existence of $(Xe)_6$ cluster is proposed (Xe(2)-Xe(3) = 4.78(6) and 4.94(7), Xe(2)-Xe(4) = 4.71(6) and 5.06(6), Xe(3)-Xe(4) = 4.11(3) and 5.32(4) $\AA$, Xe(2)-Xe(3)-Xe(2) = 93(1), Xe(3)-Xe(2)-Xe(3) = 87(1), Xe(2)-Xe(4)-Xe(2) = 91(4), Xe(2)-Xe(4)-Xe(3) = 55(2), 59(1), 61(1), and 68(1), and Xe(3)-Xe(4)-Xe(3) = 89($^{\circ}1$)). These arrangements of the encapsulated Xe atoms in the large cavity are stabilized by alternating dipoles induced on Xe(2), Xe(3), and Xe(4) by eight- and six-ring $Na^+$ ions as well as four-ring oxygens, respectively.

Keywords

References

  1. J. Phys. Chem. Solids v.32 Barrer, R. M.; Vaughan, D. E. W.
  2. J. Cata. v.50 Chan, Y.-C.; Anderson, R. B.
  3. J. Phys. Chem. v.100 Heo, N. H.; Lim, W. T.; Seff, K.
  4. J. Chem. Phys. v.76 Ito, T.; Fraissard, J.
  5. J. Phys. Chem. v.96 Chen, Q. J.; Fraissard, J.
  6. J. Phys. Chem. v.93 Gedeon, A.; Bonardet, J. L.; Ito, T.; Fraissard, J.
  7. J. Phys. Chem. v.92 Bansal, N.; Dybowski, C.
  8. Zeolites v.11 Chen, Q. J.; Ito, T.; Fraissard, J.
  9. Proceedings of the 8th International Conference on Catalysis, Fraissard, J.; Ito, T.; de Menorval, L. C.
  10. Zeolites v.8 Gedeon, A.; Ito, T.; Fraissard, J.
  11. J. Phys. Chem. v.94 de Menorval, L. C.; Raftery, D.; Liu, S. B.; Takegoshi, K.;Ryoo, R.; Pines, A.
  12. Appl. Catal. v.43 no.1 Ito, T.; Bonardet, J. L.; Fraissard, J.; Nagy, J. B.; Andre,C.; Gabelica, Z.; Derouane, E. G.
  13. J. Phys. Chem. v.99 Li, F. Y.; Berry, R. S.
  14. J. Chem. Phys. v.96 Jameson, C. J.; Jameson, A. K.; Baello, B. I.; Lim, H. M.
  15. J. Chem. Phys. v.100 no.8 Jameson, C. J.; Jameson, A. K.; Baello, B. I.; Lim, H. M.
  16. J. Chem. Phys. v.100 no.8 Jameson, C. J.; Jameson, A. K.; Lim, H. M.; Baello, B. I.
  17. J. Am. Chem. Soc. v.110 Chmelka, B. F.; Ryoo, R.; Liu, S.-B.; de Menorval, L. C.;Radke, C. J.; Petersen, E. E.; Pines, A.
  18. Physical Review Letters v.66 Chmelka, B. F.; Raftery, D.; McCormick, A. V.; de Menorval, L. C.; Levine, R. D.; Pines, A.
  19. U.S. Patent 3316691, Sesney, W. J.; Shaffer, L. H.
  20. Zeolites v.4 Gesser, H. D.; Rochon, A.; Lemire, A. E.; Masters, K. J.;Raudsepp, M.
  21. Alternative Energy Sources v.8 Fraenkel, D.; Lazar, R.; Shabtai, J.
  22. J. Phys. Chem. Yoon, J. H.; Heo, N. H.
  23. HwahakKonghak v.29 Rho, B. R.; Kim, D. H.; Kim, J. T.; Heo, N. H.
  24. J. Phys. Chem. v.92 Samant, M. G.; de Menorval, L. C.; Dalla Betta, R. A.;Boudart, M.
  25. J. Phys. Chem. B v.103 Heo, N. H.; Lim, W. T.; Kim, B. J.; Lee, S. Y.; Kim, M. C.;Seff, K.
  26. Zeolite Molecular Sieves: Structure, Chemistry, and Uses Breck, D. W.
  27. J. Am. Chem. Soc. v.117 Ratcliffe, C. I.; Ripmeester, J. A.
  28. J. Phys. Chem. v.98 Heo, N. H.; Cho, K. H.; Kim, J. T.; Seff, K.
  29. J. Crystal Growth v.8 Charnell, J. F.
  30. J. Am. Chem. Soc. v.100 Cruz, W. V.; Leung, P. C. W.; Seff, K.
  31. J. Phys. Chem. v.88 Mellum, M. D.; Seff, K.
  32. International Tables for X-ray Crystallography v.IV
  33. Acta Crystallogr v.18 Cromer, D. T.
  34. IInternational Tables for X-ray Crystallography v.IV
  35. J. Phys. Chem. v.82 Kim, Y.; Seff, K.
  36. J. Phys. Chem. v.79 Yanagida, R. Y.; Amaro, A. A.; Seff, K.
  37. J. Phys. Chem. v.79 Leung, P. C. W.; Kunz, K. B.; Maxwell, I. E.; Seff, K.
  38. J. Am. Chem. Soc. v.99 Firror, R. L.; Seff, K.
  39. Bull. Korean Chem. Soc. v.15 Cho, K. H.; Kwon, J. H.; Kim, H. W.; Park, C. S.; Heo, N. H.
  40. J. Am. Chem. Soc. v.109 Heo, N. H.; Seff, K.
  41. Bull. Korean Chem. Soc. v.16 Park, C. S.; Yoon, M. S.; Lim, W. T.; Kim, M. C.; Suh, S.H.; Heo, N. H.
  42. Handbook of Chemistry and Physics(64th ed.)
  43. Acta Crystallogr., Sect. B v.25 Shannon, R. D.; Prewitt, C. T.
  44. The Elements(2nd ed.) Emsley, J.

Cited by

  1. Framework-Type Determination for Zeolite Structures in the Inorganic Crystal Structure Database vol.39, pp.3, 2000, https://doi.org/10.1063/1.3432459