Facile Synthesis of 4-((*N*-(*tert*-Butoxycarbonyl)amino)methyl)-7-*N*-(*tert*-butoxycarbonyl)-3-oxa-2,7-diazabicyclo[3.3.0]oct-1-ene

Ho-Jung Kang

Department of Chemistry, Kyunghee University, Seoul 130-701, Korea Received August 12, 2000

Since the development of norfloxacin.¹ many fluoroquinolone antibacterials have been synthesized to improve their antimicrobial activities against various infectious organisms. Much attention has been paid to the introduction of a proper amino group such as piperazine and pyrrolidine derivatives at the C-7 position of the quinolone ring, which play a key role in the improvement of potency, spectrum and pharmacokinetic profile of quinolone antibacterials.² In this effort, recent studies have disclosed that enhanced antibacterial activity against Gram-positive strains could be achieved by the introduction of an alkyloximino group in the pyrrolidine and piperidine ring as an amino group surrogate^{3,4} including 3-(methyloximino)-4-(aminomethyl)pyrrolidine substituent in LB20304 which is a promising candidate for new quinolone antibiotics.⁵

Interestingly, the alkyloximino group in LB20304 had an exclusive Z configuration at its methyloxime moity⁵ and this led us to investigate the stereochemical relationship of alkyloximino group with the biological efficacy of LB20304 by the ring-forming modification of 3-(methyloximino)-4-(amino-methyl)pyrrolidine which resembles *E*-alkyloximino isomer. Herein we wish to report our preliminary results on the efficient synthesis of 4-aminomethyl-3-oxa-2.7-diazabi-cyclo[3.3.0]oct-1-ene as a mimic of *E*-alkyloximino isomer of C-7 amine in LB20304.

Synthesis of bicyclic amine 1 is outlined in Scheme 1. Protections and allylation of ethanolamine were carried out using slightly modified conditions of the literature procedure⁶ to give carbamate 2. Osmylation⁷ and selective TBDMS protection⁸ of carbamate 2 provided alcohol 3 which was subsequently oxidized and methylenated to alkene 4 through PDC oxidation and Wittig olefination conditions. Desilylation, mesylation and azide substitution of alkene 4 afforded azide 5 in high yield. Consecutive reactions of azide reduction.⁹ BOC protection and THP deprotection converted azide 5 to alcohol 6. Swern oxidation¹⁰ and following oxime formation transformed alcohol 6 to almost an equal isomeric mixture of syn and anti oximes 7. *In situ* generation of nitrile oxide and subsequent intramolecular cycloaddition using

Scheme 1. reagents and conditions: (a) $(t\text{-BOC})_2\text{O}$, $H_2\text{O}$, 99%; (b) DHP, cat. PPTS, 95%; (c) allyl bromide, NaH, TBAI, DMF, 93%; (d) cat. OsO₄, $H_2\text{O}$ -Acetone; (e) TBDMSCI, Et_3N , DMAP, CH₂Cl₂, 85% (overall 2 steps); (f) PDC, 3 mol. sieve, CH₂Cl₂, 92%; (g) Ph₃PCH₃-T-, *n*-BuLi, THF, -30 °C 0 °C, 85%; (h) TBAF, THF, 98%; (i) Mesyl chloride, Et_3N , CH₂Cl₂, -30 °C; (j) NaN₃, DMF, 90% (overall 2 steps): (k) Ph₃P, THF then H₂O (l) (*t*-BOC)₂O, CHCl₃, 85% (overall 2 steps); (m) cat. TsOH, MeOH, 90%; (n) Swem oxidation, 90%; (o) NH₂OHHCl, Na₂CO₃, EtOH-H₂O, 91%; (p) NCS, Py. CHCl₃, Et_3N , 60%.

NCS¹¹ eventually produced the target bicyclic amine as its BOC-protected form 1 in moderate yield.¹² The synthetic pathway described above is quite efficient and is applicable to the synthesis of various amine analogues. Further structural modifications of amine 1 and its coupling reactions with various quinolone cores are actively underway.

Acknowledgment. I am grateful to Sanghee Lee and Jisun Kim for their experimental assistance and Kyunghee University for its financial support (University Research Fund 2000) for this work.

References

- Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. J. Med. Chem. 1980, 23, 1358.
- (a) Domagala, J. M. J. Antimicrob. Chemother. 1994, 33, 685. (b) Hooper, D. C.; Wolfson, J. S. Quinolone Antimi-

1070 Bull. Korean Chem. Soc. 2000, Vol. 21, No. 11

crobial Agents, 2nd Ed.; American Society for Microbiology: Washington, D. C., 1993; pp 3-52. (c) Chu, D. W.; Fernandes, P. B. *Adv. Drug Res.* **1991**, *21*, 39.

- Cooper, C. S.; Klock, P. L.; Chu, D. T.; Hardy, D. J.; Swanson, R. N.; Platter, J. J. J. Med. Chem. 1992, 35, 1392.
- Nakano, J.; Fukui, H.; Haigoh, H.; Senda, H.; Iwatani, W.; Arika, T. *European Patent 0541086*, Dec, 1993.
- Hong, C. Y.; Kim, Y. K.; Chang, J. H.; Kim, S. H.; Choi, H.; Nam, D. H.; Kim, Y. Z.; Kwak, J. H. J. Med. Chem. 1997, 40, 3584.
- Kang, H.-J.; Lee B.-H. J. Korean Chem. Soc. 1999, 43, 503.
- VanRheenen, V.; Kelly, R. C.; Cha, D. Y. *Tetrahedron Lett.* 1976, 1973.
- Ogilvie, K. K.; Shifman, A. L.; Penney, C. L. Can. J. Chem. 1979, 57, 2230.
- Vaultier, M.; Knouzi, N.; Carrie, R. *Tetrahedron Lett.* 1983, 763.
- Mancuso, A. J.; Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 2480.

Communications to the Editor

- 11. Larsen, K. E.; Torssell, K. B. G. Tetrahedron 1984, 40, 2985.
- 12. ¹H NMR (100MHz, CDCl₃, δ) Compound **3**: 4.61 (1H, m), 4.01-3.69 (4H, m), 3.69-3.30 (7H, m), 1.90-1.47 (6H, m), 1.46 (9H, s), 0.90 (9H, s), 0.07 (6H, s); compound 4: 5.13 (1H, s), 4.87 (1H, s), 4.57 (1H, m), 4.07 (2H, s), 3.92 (2H, s), 3.86-3.68 (2H, m), 3.60-3.25 (4H, m), 1.80-1.45 (6H, m), 1.43 (9H, s), 0.89 (9H, s), 0.04 (6H, s); compound 5: 5.18 (1H, s), 5.10 (1H, s), 4.59 (1H, m), 4.00 (2H, s), 3.95-3.70 (2H, m), 3.76 (2H, s), 3.67-3.25 (4H, m), 1.90-1.46 (6H, m), 1.47 (9H, s); compound 6: 5.20-4.50 (1H, br s), 5.05 (1H, s), 4.94 (1H, s), 3.90 (2H, s), 3.78-3.64 (4H, m), 3.78-3.64 (4H, m), 3.40-3.29 (2H, m), 2.35 (1H, br s), 1.46 (9H, s), 1.44 (9H, s); compound 7: 9.05 (1H, br s), 7.37 (1H, t, J = 5.5 Hz), 5.30-4.70 (1H, br s), 5.08 (1H, s), 4.95 (1H, s), 3.90-3.55 (6H, m), 1.47 (9H, s), 1.44 (9H, s); compound 1: 5.10-4.80 (1H, m), 4.48 (1H, d, J = 9.0 Hz), 4.17 (2H, s), 4.16-3.90 (1H, m), 3.85-3.65 (1H, m), 3.55-3.30 (2H, m), 3.25 (1H, d, J = 11.0 Hz), 1.47 (9H, s), 1.44 (9H, s).