Facile Synthesis of 4-((N -(tert-Butoxycarbonyl)amino)methyl)-7- N -(tert-butoxycarbonyl)-3-oxa-2,7-diazabicyclo[3.3.0]oct-1-ene

Ho-Jung Kang
Deparment of Chemistry, Kymghee University, Seoul 130-701, Korea
Received August 12, 2000

Since the development of norfloxacin. ${ }^{1}$ many fluoroquinolone antibacterials have been synthesized to improve their antimicrobial activities against various infectious organisms. Much attention has been paid to the introduction of a proper amino group such as piperazine and pyrrolidine derivatives at the $\mathrm{C}-7$ position of the quinolone ring, which play a key role in the improvement of potency, spectrum and pharmacokinetic profile of quinolone antibacterials. ${ }^{2}$ In this effort. recent studies have disclosed that enhanced antibacterial activity against Gram-positive strains could be achieved by the introduction of an alkyloximino group in the pyrrolidine and piperidine ring as an amino group surrogate ${ }^{3.4}$ including 3-(methyloximino)-4-(aminomethyl)pyrrolidine substituent in LB20304 which is a promising candidate for new quinolone antibiotics. ${ }^{5}$

Interestingly, the allyyloximino group in LB20304 had an exclusive Z configuration at its methyloxime moity ${ }^{5}$ and this led us to investigate the stereochemical relationship of alkyloximino group with the biological efficacy of LB20304 by the ring-fomming modification of 3 -(methyloximino)- 4 -(aminomethyl)pyrrolidine which resembles E-alkyloximino isomer. Herein we wish to report our preliminary results on the efficient synthesis of t-aminomethyl-3-oxa-2.7-diazabi-cyclo[3.3.0]oct-1-ene as a mimic of E-alkyloximino isomer of C-7 amine in LB20304.

Synthesis of bicyclic amine 1 is outlined in Scheme 1 . Protections and allylation of ethanolamine were carried out using slightly modified conditions of the literature procedure ${ }^{6}$ to give carbamate 2. Osmylation ${ }^{7}$ and selective TBDMS protection ${ }^{8}$ of carbamate 2 provided alcohol 3 which was subsequently oxidized and methylenated to alkene 4 through PDC oxidation and Wittig olefination conditions. Desilylation. mesylation and azide substitution of alkene 4 afforded azide 5 in high yield. Consecutive reactions of azide reduction. ${ }^{5}$ BOC protection and THP deprotection converted azide 5 to alcohol 6. Swern oxidation ${ }^{10}$ and following oxime formation transformed alcohol 6 to almost an equal isomeric misture of syn and anti oximes 7. In situ generation of nitrile oxide and subsequent intramolecular cycloaddition using

Scheme 1. reagents and conditions: (a) ($t-\mathrm{BOC})_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, 99 \%$; (b) DHP, cat. PPTS, 95%; (c) allyl bromide, NaH, TBAI, DMF, 93\%: (d) cat. $\mathrm{OsO}_{4}, \mathrm{H}_{2} \mathrm{O}$-Acetone; (e) TBDMSCl, Et 3 N, DMAP; $\mathrm{CH}_{2} \mathrm{Cl}_{3}, 85 \%$ (overall 2 steps) (f) $\mathrm{PDC}, 3$ mol sieve, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 92%; (g) $\mathrm{Ph}_{3} \mathrm{PCH}_{3}{ }^{-} \mathrm{I}^{-}, n-\mathrm{BuLi}$, THF, $-30^{\circ} \mathrm{C} 0{ }^{\circ} \mathrm{C}, 85 \%$; (h) TBAF, THF, 98%, (i) Mesyl chloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30{ }^{\circ} \mathrm{C}$: (j) NaN_{3}, DMF, 90% (overall 2 steps): (k) $\mathrm{Ph}_{3} \mathrm{P}$, THF then $\mathrm{H}_{2} \mathrm{O}$ (1) (f $\mathrm{BOC})_{2} \mathrm{O}, \mathrm{CHCl}_{5,8}, 85 \%$ (overall 2 steps): (m) cat. $\mathrm{TsOH}, \mathrm{MeOH}$, 90%; (n) Swem oxidation, 90%; (o) $\mathrm{NH}_{2} \mathrm{OHHCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}-$ $\mathrm{H}_{2} \mathrm{O}, 91 \%$, (p) $\mathrm{NCS}, \mathrm{Py}, \mathrm{CHCl}_{3}, \mathrm{Et}_{3} \mathrm{~N}, 60 \%$.

NCS ${ }^{11}$ eventually produced the target bicyclic amine as its BOC-protected form 1 in moderate yield. ${ }^{12}$ The synthetic pathway described above is quite efficient and is applicable to the synthesis of various amine analogues. Further structural modifications of amine 1 and its coupling reactions with various quinolone cores are actively underway.

Acknowledgment. I am grateful to Sanghee Lee and Jisun Kim for their experimental assistance and Kyunghee University for its financial support (University Research Fund 2000) for this work.

References

1. Koga, H.; Itoh, A.: Murayama, S.: Suzue, S.; Irikura, T. J. Med. Chem. 1980, 23, 1358.
2. (a) Domagala, J. M. J. Animicrob. Chemother 1994, 33 , 685. (b) Hooper, D. C.; Wolfson, J. S. Quinolone Antimi-
crobial.Agents, 2nd Ed.; American Society for Microbiology: Washington, D. C., 1993; pp 3-52. (c) Chu, D. W.; Fennandes, P. B. Adv: Drug Res. 1991, 21, 39.
3. Cooper, C. S.; Klock, P. L.; Chu, D. T.; Hardy, D. I.; Swanson, R. N.; Platter, J. I. J. Med. Chem. 1992, 35, 1392.
4. Nakano, J.; Fukui, H.: Haigoh, H.: Senda, H:: Iwatani, W.: Arika, T. Etropean Patent 05 11086 , Dec, 1993.
5. Hong, C. Y.; Kim, Y. K.: Chang, J. H.; Kim, S. H.: Choi, H.: Nam, D. H.: Kim, Y. Z.: Kwak, T. H. J. Med. Chem. 1997, 10,3584
6. Kang, H.-I., Lee B.-H. J. Korean Chem. Soc. 1999, 43, 503.
7. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahectron Lett. 1976, 1973.
8. Ogilvie, K. K.: Shifman, A. L.: Pemney, C. L. Can. J. Chem. 1979, 57, 2230
9. Vaultier, M.; Knouzi, N.; Carrie, R. Tetrahedron Lett. 1983, 763
10. Mancuso, A. J.: Huang, S. L.; Swem, D. J. Org. Chem. 1978, $+3,2480$.
11. Larsen, K. E.; Torssell, K. B. G. Tetrahedron 1984, 40. 2985.
12. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$ Compound 3: $4.61\left(1 \mathrm{H}_{4}\right.$ $\mathrm{m}), 4.01-3.69(4 \mathrm{H}, \mathrm{m}), 3.69-3.30(7 \mathrm{H}, \mathrm{m}), 1.90-1.47(6 \mathrm{H}$, $\mathrm{m}), 1.46(9 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.07(6 \mathrm{H}, \mathrm{s})$, compound 4 : $5.13(\mathrm{lH}, \mathrm{s}), 4.87(\mathrm{lH}, \mathrm{s}), 4.57(\mathrm{lH}, \mathrm{m}), 4.07(2 \mathrm{H}, \mathrm{s}), 3.92$ $(2 \mathrm{H}, \mathrm{s}), 3.86-3.68(2 \mathrm{H}, \mathrm{m}), 3.60-3.25(4 \mathrm{H}, \mathrm{m}), 1.80-1.45$ $(6 \mathrm{H}, \mathrm{m}), 1.43(9 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.04(6 \mathrm{H}, \mathrm{s})$; compound $5: 5.18(1 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{s}), 4.59(1 \mathrm{H}, \mathrm{m}), 4.00$ $(2 \mathrm{H}, \mathrm{s}), 3.95-3.70(2 \mathrm{H}, \mathrm{m}), 3.76(2 \mathrm{H}, \mathrm{s}), 3.67-3.25(4 \mathrm{H}, \mathrm{m})$, $1.90-1.46(6 \mathrm{H}, \mathrm{m}), 1.47(9 \mathrm{H}$, s); compound 6: $5.20-4.50$ $(1 \mathrm{H}, \mathrm{br}$ s), $5.05(1 \mathrm{H}, \mathrm{s}), 4.94(\mathrm{lH}, \mathrm{s}), 3.90(2 \mathrm{H}, \mathrm{s}), 3.78-$ $3.64(4 \mathrm{H}, \mathrm{m}), 3.78-3.64(4 \mathrm{H}, \mathrm{m}), 3.40-3.29(2 \mathrm{H}, \mathrm{m}), 2.35$ (IH, br s), $1.46(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s})$, compound 7: 9.05 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 5.30-4.70(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.08(\mathrm{IH}, \mathrm{s}), 4.95(\mathrm{IH}, \mathrm{s}), 3.90-3.55(6 \mathrm{H}, \mathrm{m}), 1.47(9 \mathrm{H}, \mathrm{s})$, $1.44(9 \mathrm{H}, \mathrm{s})$; compound $1: 5.10-4.80(1 \mathrm{H}, \mathrm{m}), 4.48(1 \mathrm{H}, \mathrm{d}$, $J=9.0 \mathrm{~Hz}), 4.17(2 \mathrm{H}, \mathrm{s}), 4.16-3.90(\mathrm{IH}, \mathrm{m}), 3.85-3.65$ $(1 \mathrm{H}, \mathrm{m}), 3.55-3.30(2 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz})$. $1.47(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s})$.
