Reaction of 3-Halogenated cis-Cyclohexa-3,5-diene-1,2-diol Derivatives with Pd on Charcoal

So Ha Lee and Chan Seong Cheong ${ }^{\circ}$
Life Sciences Division, Korea Institute of Science and Techologv, 439-1, Howolkok-dong, Seongbuk-ku, Seoul 136-791, Korea
Recerved June 1, 2000

The bacterial biotransformation of substituted benzenes by mutant strains of pseudomonas putider produced 3-halogenated cis-cyclohexa-3.5-diene-1,2-diols (1). ${ }^{\text {² }}$ Compounds 1 have been used as useful chiral synthons in the preparation of a variety of conduritols and conduramines, ${ }^{3}$ aza-sugars, ${ }^{4}$ sphingosines. ${ }^{5}$ inositols ${ }^{6}$ and other naturally occurring substances. ${ }^{7}$ cis-Diol derivatives $\mathbf{4}$ and 5 were synthesized from cis-diols 1, and they showed peculiar reactivity with Pd on charcoal. Here. we report the reaction in detail.
Compounds + and $\mathbf{5}$ were prepared in three steps from arene dihydrodiols 1 as shown in Scheme 1. ${ }^{3 \pi}$ Arene dihydrodiols 1 were treated with dimethoxypropane in p-toluenesulfonic acid. followed by stereospecific anti-epoxidation to the protecting group and nucleophilic ring opening with aniline or benzylamine in neutral alumina, to give 4 and 5 . enantioselectively pure, respectively.
The reaction of 4 or 5 with Pd on charcoal afforded several products as shown in Scheme 2. Compound 5 was reacted with $10 \% \mathrm{Pd}$ on charcoal in ethanol under hydrogen atmosphere. giving 7 as the major product (Table 1. entry 1). Reaction with 5% Pd on charcoal. gave 6 as the major product (entry 2). Compound ta was reacted with $10 \% \mathrm{Pd}$ on charcoal. giving 8 and the major product 6 (entry 3). whereas the reaction of ta with $5 \% \mathrm{Pd}$ on charcoal, gave 8 . 10 and the major product 6 (entry 4).

Also. compound +b was reacted with $10 \% \mathrm{Pd}$ on charcoal to give 9 as the major product (entry 5). Generally, it is known that the benzyl group and double bond can be easily reduced by Pd on charcoal, but the isopropylidene group can

a) 2,2-dimethoxypropane, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~h}$, b) m - $\mathrm{CPBA}(70 \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 8 \mathrm{~h}$, c) aniline, neutral alumina, $\mathrm{CHCl}_{3}, \mathrm{rt}, 12 \mathrm{~h}$, d) BnNH_{2}, neutral alumina, ${ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{Cl}_{3}, \mathrm{rt}, 12 \mathrm{~h}$.

Scheme 1. Syntheses of cis-diol derivatives 4 and 5 .

Scheme 2. Reaction of cis-diol derivatives 4 and 5 with Pd / C.

Table 1. The reaction yield of 4 and 5 with Pd on charcoal

Entry	Comp.	Pd/C	Yield $\left._{2} \%\right)^{\sigma}$					
	No.		$\mathbf{6}$	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	
1	$\mathbf{5}$	10	25	60	-	-	-	
2	$\mathbf{5}$	5	85	5	-	-	-	
3	$\mathbf{4 a}$	10	60	-	10	-	-	
4	$\mathbf{4 a}$	5	75	-	8	-	10	
5	$\mathbf{4 b}$	10	-	-	10	75	-	

${ }^{\circ}$ Isclated yield
not. The deisopropylidenation reaction in 4 and 5 was thought to be concerned with the acidity of hydrogen halides fomed in the reaction. Table 1 (entry 1 and 2) shows that compound 5 reacted more rapidly with $10 \% \mathrm{Pd}$ on charcoal than with $5 \% \mathrm{Pd}$ on charcoal to give the deisopropylidenation compound 7. Also, the hydrogen bromide formed in the reaction (entry 5) was more acidic than the hydrogen chloride formed in the reaction (entry 4). and the deisopropylidenation compound 9 was obtained.

Compound ta was dephenylated in the reaction with Pd on charcoal, giving 6 regardless of content percentage of Pd on charcoal. but 4b was not dephenylated in the reaction. which gave 9 . Generally, N-debenzylation is common. but N-dephenylation is not.

This method can be used to synthesize various dilydroconduritols ${ }^{8}$ and dihydroconduramines from cis-diols 1. using various nucleophiles.

The reaction of 1.3-cyclohexadien-cis-diol derivatives 4 and 5 with Pd on charcoal to give the compounds 6.7 and 9 . which included the hydrogenation of the double bond. dehalogenation. deisopropylidenation. debenzylation and dephenylation spontaneously or in tandem. suggest an efficient route to pharmaceutical polyoxygenated compounds derived from cis-diols 1.

References

1. (a) Gibson, D. T.; Koch, J. R.; Kallio, R. E. Biochemistry 1968, 7, 2653 . (b) Gibson, D. T.; Koch, T. R.; Schuld, C. L.; Kallio, R. E. Biochemistry 1968, 7, 3795.
2.

(a) Carless. H. A. J. Tetrahedron: Asymmetry 1992, 3, 795. (b) Hudlicky, T.; Thorpe, A J. J. Chem. Soc., Chem. Commun. 1996, 1993. (c) Hudlicky, T. Chem. Rev 1996, 96, 3.
3. (a) Hudlicky, T.; Luna, H.; Olivo, H. F.; Anderson, C.: Nugent, T: Price, J. D. J. Chem. Soc., Perkin Trans. I 1991, 2907. (b) Carless, H. A. J. Tetrahedron Lett. 1992. 33, 6379. (c) Mandel, M.; Hudlicky, T. Simlett 1993, 418. (d) Johnson, C. R.; Plé, P. A.; Su, L.; Heeg, M. J.; Adams, J. P. Synlett 1992, 388.
4. (a) Johns, B. A.; Pan, Y. T.; Elbein, A. D.; Johnson, C. R. J. Am. Chem. Soc. 1997, 119, 4856. (b) Hudlicky, T: Rouden, J.; Luna, H.; Allen, S. J. Am. Chem. Soc. 1994,
116. 5099.
5. (a) Nugent, T. C.; Hudlicky, T. J. Org. Chem. 1998, 63, 510 (b) Hudlicky, T.; Nugent, T.; Griffith, W. J. Ong. Chem. 1994, 59, 7944.
6. Mandel, M.; Hudlicky, T. J. Org. Chem. 1993, 58, 2331.
7. (a) Johnson, C. R.: Johns, B. A. J. Ory. Chem. 1997, 62, 6046. (b) Hudlicky, T.: Tian, X: Königsberger, K: Rouden, I. J. Org. Chem. 1994, 59, 4037. (c) Tian, X: Maurya, R: Königsberger, K.: Hudlicky, T. Sinlett 1995, 1125. (d) Banwell, M.: Blakey, S.: Harfoot, G.; Longmore, R. J. Chem. Soc. Perkin Trans. 1 1998, 3141. (e) Banwell, M.; De Savi, C.; Watson, K. J. Chem. Soc., Perkin Trans. I 1998, 2251.
8. (a) Carless, H. A. T.; Oak, O. Z. Tetrahedron Lett. 1989, 30, 1719. (b) Akbalut, N.; Balci, M. J. Org. Chem. 1988, 53, 3338 .

