DOI QR코드

DOI QR Code

Infrared Spectroscopic Evidences for the Superconductivity of $La_2CuO_4$-related Compounds: A Superconductivity Probe


Abstract

We present the effects of temperature (between 10 K and 298 K) and of hole concentration on the frequency and intensity of characteristic phonons in polycrystalline $La_2CuO_4-related$ compounds using FT-IR spectros-copy. The influences of the concentration of carrier doped on the phonon modes are prominent in the IR spectra of $La_2CuO_4-related$ compounds. For $La_2-xSrxCuO_4({\chi}=$ 0.00, 0.03, 0.07, 0.10, and 0.15) and electrochemically (or chemically) oxidized $La_2CuO_4$, the intensities of the transverse oxygen mode around 680cm $-^1$ which cor-responds mainly to Cu-O(1) stretching vibration in the basal plane of CuO6 octahedron, are decreased and dis-appeared depending on the Sr-substitution rate and the amount of excess oxygen, while the longitudinal oxygen mode around 510 cm $-^1$ corresponding to the Cu-O(2) stretching in the basal plane of CuO6 octahedron are near-ly invariable. In particular, after two cycles of cooling-heating between 10 K and 298 K for these sample, the phonons around 680 cm $-^1$ are blue shif 13-15 cm $-^1$, while the phonons around 510 cm $-^1$ are nearly constant. The introduction of the charge carrier by doping would give rise to the small contraction of CuO6 oc-tahedron as Cu $^3+$ requires a smaller site than Cu $^2+$, which results in the shortening of the Cu-O(1) bond length and Cu-O(2) bond length with the increased La-O(2) bond length. These results in the frequency shift of the characteristic phonons. The IR spectra of $La_2Li0.5Cu0.5O_4$ which exhibits an insulator behavior despite the $Cu^3+$ of nearly 100%, corroborate our IR interpretations. The mode around 710 cm $-^1$ corresponding to Cu-O(1) stretching vibration is still strongly remained even at low temperature (10 K). Thus, we conclude that the con-duction electrons formed within $CuO_2$ planes of $La_2CuO_4-related$ superconductors screen more effectively the transverse oxygen breathing mode around 680 $cm-^1$ depending on the concentration of the doped charge carrier in $La_2CuO_4-related$ compounds, which might use as a superconductivity probe.

Keywords

References

  1. Z. Phys. B v.90 Nobumasa, H.;Shimizu, K.;Nishina, M.;Kawai, T.
  2. Acad. Sci.(Ser2) v.310 Wattiaux, A.;Park, J. C.;Grenier, J. C.;Pouchard, M. C. R.
  3. Physica C v.177 Park, J. C.;Houng, P. V.;Rey-Lafon, M.;Grenier, J. C.;Wattiaux, A.;Pouchard, M.
  4. Z. Phys. B v.64 Bednorz, J. G.;Muller, K. A.
  5. Phys. Rev. Lett. v.58 Cava, R. J.;von Dover, R. B.;Batlogg, B.;Rietmann, E. A.
  6. Phys. Rev. B v.35 Fujimori, A.;Takayama-Muromachi, E.;Uchida, Y.;Okai, B.
  7. Phys. Rev. Lett v.58 Mattheiss, L. E.
  8. Phys. Rev. Lett. v.58 Yu, J.;Freeman, A. J.;Xu, J. H.
  9. J. Mater. Education v.2 Goodenough, J. B.
  10. Mat. Res. Soc. Symp. Proc. v.156 Goodenough, J. B.;Manthiram, A.;Zhou, J.
  11. Acad. Sci.(Ser2) v.304 Bellie, J.;Cabanel, R.;Chaillout, C.;Chevalier, B.;Demazeau, G.;Deslandes, F.;Etourneau, J.;Lejay, P.;Michel, C.;Provost, J.;Raveau, B.;Sulpice, A.;Tholence, J. L.;Tournier, R. C. R.
  12. Structural Inorganic Chemistry Wells, A. F.
  13. Space Groups for Solid State Scientists Burns, G.;Glazer, A. M.
  14. Phys. Rev. B v.35 Burn, T.;Grimsditch, M.;Gray, K. E.;Bhadra, R.;Maroni, V.;Loong, C. K.
  15. Solid State Commun. v.64 Copic, M.;Mihailovic, D.;Zgonik, M.;Prester, M.;Biljakovic, K.;Orel, B.;Brnicevic, N.
  16. Solid State Commun. v.68 Bruns, G.;Chandrashekhar, G. V.;Dacol, F. H.;Shafer, M. W.
  17. Phys. Rev. B v.38 Weber, W. H.;Peters, C. R.;Wanklyn, B. M.;Chen, C. K.;Watts, B. E.
  18. Jpn. J. Appl. Phys. Saito, Y.;Yoshizaki, R.;Sawada, H.;Iwatuni, T. E.;Abe, Y.;Matsuura, E.
  19. Phys. Rev. B v.35 Schlesinger, Z.;Green, R. L.;Bednorz, J. G.;Muller, K. A.
  20. Phys. Rev. Lett. v.58 Stavola, M.;Cava, R. J.;Rietman, E. A.
  21. Phys. Rev. B v.26 Orenstein, J.;Thomas, G. A.;Rapkine, D. H.;Bethea, C.G.;Levine, B. F.;Cava, R. J.;Rietman, E. A.;Johnson, Jr., D. W.
  22. Solid State Commun. v.64 Degiorgi, L.;Kaldis, E.;Wachter, P.
  23. Physica C v.207 Taktakma-Muromachi, E.;Sasaki, T.;Matsui, Y.
  24. Physica C v.218 Taktakma-Muromachi, E.;Navrotski, A.
  25. J. Solid State Chem. v.69 Harris, D. C.;Hewston, T. A.
  26. J. Inorg. Nucl. Chem. v.27 Blasse, G.
  27. Mater. Res. Bull. v.7 Demazeau, G.;Parent, C.;Pouchard, M.;Hagenmuller, P.
  28. Less-Common. Met. v.10 Abbattista, F.;Vallino, M.;Mazza, D. J.
  29. Solid State Chem. v.80 Paul Attfield, J.;Gerard Ferey, J.
  30. Phys. Rev. B v.40 Bazhenov, A. V.;Fursova, T. N.;Timofeev, V. B.;Cooper, A. S.;Remeika, J. P.;Fisk, Z.
  31. Phys. Rev. B v.37 Gervais, F.;Echegut, P.;Bassat, J. M.;Odier, P.
  32. Phys. Rev. B v.41 Mostoller, M.;Zhang, J.;Rao, A. M.;Eklund, P. C.
  33. Opt. Soc. Am. B v.6 Eklund, P. C.;Rao, A. M.;Lehman, G. W.;Doll, G. L.;Dresselhaus, M. S.;Picone, P. J.;Gabbe, D. R.;Jenssen, H. P.;Dresselhaus, G. J.
  34. Phys. Rev. B v.38 Jorgensen, J. D.;Dabrowski, B.;Shiyou, Pei.;Hinks, D. G.;Soderholm, L.;Morosin, B.;Schirber, J. E.;Venturini, E. L.;Ginley, D. S.
  35. Phys. Rev. B v.49 Radaelli, P. G.;Hinks, D. G.;Michell, A. W.;Hunter, B. A.;Wagner, J. L.;Dabrowski, B.;Vandervoot, K. G.;Viswanathan, H. K.;Jorgensen, J. D.
  36. Phys. Rev. B v.48 Radaelli, P. G.;Jorgensen, J. D.;Schultz, A. J.;Hunter, B. A.;Wagner, J. L.;Chou, F. C.;Johnston, D. C.
  37. Neutron News v.1 Hewat, A. W.
  38. Phys. Rev. B v.37 Kastner, M. A.;Birgeneau, R. J.;Chen, C. Y.;Chiang, Y. M.;Gabbe, D. R.;Jenssen, H. P.;Junk, T.;Peters, C. J.;Picone, P. J.;Tineke, T.;Thurston, T. R.;Tuller, H. L.