DOI QR코드

DOI QR Code

Vibrational Analysis of Dopamine Neutral Bae based on Density Functional Force Field


Abstract

Vibrational properties of dopamine neutral species in powder state have been studied by means of the normal mode analysis based on the force constants obtained from the density functional calculation at B3LYP level and the results of Fourier trans form Raman and infrared spectroscopic measurements. Ab initio calculation at MP2 level shows that the trans conformer of dopamine has higher electronic energy about 1.4 kcal/mol than those of the gauche+ and the gauche-conformers, and two gauche conformers have almost the same energies. Free energies calculated at HF and B3LYP levels show very similar values for three conformers within 0.3 kcal/mol. Empirical force field has been constructed from force constants of three conformers, and refined upon ex-perimental Raman spectrum of dopamine to rigorous values. The major species of dopamine neutral base in the powder state is considered a trans conformer as shown in the crystallographic study of dopamine cationic salt.

Keywords

References

  1. The Chemistry of Dopamine Grol, C. J.;Horn, A. S.(ed.);Korf, J.(ed.);Westerink, B. H. C.(ed.)
  2. J. Neurochem. v.22 Rajan, K. S.;Davis, J. M.;Colburn. R. W.
  3. Bioinorg. Chem. v.6 Rajan, K. S.;Skripkus, A.;Marks, G. E.;Davis, J. M.
  4. Bull. Korean Chem. Soc. v.13 Park, M. K.;Yoo, H. S.;Kang, Y. K.;Lee, N. S.
  5. Bull. Korean Chem. Soc. v.18 Youn, M. Y.;Kim, Y.;Lee, N. S.
  6. Anal. Chem. v.60 Lee, N. S.;Hsieh, Y. Z.;Paisley, R. F.;Morris, M. D.
  7. J. Am. Chem. Soc. v.101 Que, L.;Heistand, R. H.
  8. J. Am. Chem. Soc. v.114 Urban, J. J.;Cramer, C. J.;Famini, G. R.
  9. J. Theor. Biol. v.185 Nishihira, J.;Tachikawa, H.
  10. J. Am. Chem. Soc. v.113 Cramer, C. J.;Truhlar, D. G.
  11. J. Chem. Phys. v.204 Alagone, G.;Ghio, C.
  12. J. Mol. Struct. v.484 Fausto, R.;Ribeiro, M. S.;Pedroso de Lima, J.
  13. J. Am. Chem. Soc. v.119 Urban, J. J.;Cornin, C. W.;Roberts, R. R.;Famini, G. R.
  14. J. Am. Chem. Soc. v.121 Nagy, P. I.;Alagona, G.;Ghio, C.
  15. J. Phys. Chem. A v.104 Collado, J. A.;Tunon, L.;Silla, E.;Ramirez, F. J.
  16. J. Am. Chem. Soc. v.122 Ceccarelli, M.;Lutz, M.;Marchi, M.
  17. J. Mol. Struct. v.510 Zanoun, A.;Lagant, P.;Vergoten, G.
  18. J. Phys. Chem. B v.102 Han, W. G.;Jalkanen, K. J.;Elstner, M.;Suhai, S.
  19. J. Phys. Chem. A v.104 Durig, J. R.;Yu, Z.;Guirgis, G. A.
  20. Biopolymer v.48 Lee, S.-H.;Krimm, S.
  21. Molecular Vibrations Wilson, Jr., E. R.;Decius, J. C.;Cross, P. C.
  22. J. Raman Spectrosc. v.26 Batista de Carvalho, L. A. E.;Teiseira-Dias, J. J. C.
  23. Raman Spectrosc. v.30 Collado, J. A.;Ramirez, F. J.
  24. Pure Appl. Chem. v.7 Shimanouchi, T.
  25. J. Phys. Chem. v.99 Lee, J. Y.;Hahn, O.;Lee, S. J.;Choi, H. S.;Shim, H.;Mhin, B. J.;Kim, K. S.
  26. J. Phys. Chem. v.99 Lee, J. Y.;Hahn, O.;Lee, S. J.;Mhin, B. J.;Lee, M. S.;Kim, K. S.

Cited by

  1. Design, docking, and synthesis of novel indeno[1,2-c]isoquinolines for the development of antitumor agents as topoisomerase I inhibitors vol.17, pp.13, 2000, https://doi.org/10.1016/j.bmcl.2007.04.064
  2. Total synthesis of 8-oxypseudopalmatine and 8-oxypseudoberberine via ring-closing metathesis vol.65, pp.49, 2009, https://doi.org/10.1016/j.tet.2009.10.027