DOI QR코드

DOI QR Code

Equilibrium Geometries of the Neutral and Ionic Clusters of $Ag_7$, $Ag_8$, and $Ag_9$ Studied by Intermediate Neglect of Differential Overlap Method


Abstract

The equilibrium geometrical structures of silver atom clusters at their electronic ground states have been theo-retically determined by using the nonrelativistic semiempirical INDO/1 method. The clusters investigated are Agn, Agn+, and Agn- (n = 7 , 8, 9). In order to find the most stable structure, i.e., the global minimum in energy hypersurface, geometry optimization and energy calculation processes have been repeatedly performed for all the possible graphical models by changing the bond parameters (resonance integral values). The heptamers are pentagonal bipyramidal-Ag7(D5h), Ag7+ (D5h), Ag7- (D5h); the octamers are pentagonal bipyramidal with one atom capped-Ag8(D2d), Ag8+ (Cs), Ag8- (D2d); the nonamers are pentagonal bipyramidal with two atoms capped -Ag9(C2v), Ag9+ (C2v), Ag9- (C2v). Our structures are in good agreement with those by ab initio calculations ex-cept for the anionic Ag9- cluster. And it is noted that the INDO/1 method can accurately predict the Ag cluster geometries when a proper set of bond parameters is used.

Keywords

References

  1. J. Chem. Phys. v.74 Thompson, G. A.;Lindsay, D. M.
  2. J. Chem. Phys. v.78 Garland, D. A.;Lindsay, D. M.
  3. J. Chem. Phys. v.78 Thompson, G. A.;Tischler, F.;Lindsay, D. M.
  4. J. Chem. Phys. v.80 Garland, D. A.;Lindsay, D. M.
  5. J. Chem. Phys. v.68 Hermann, A.;Schumacher, E.;Woste, L.
  6. J. Chem. Phys. v.84 Kappes, M. M.;$Sch\"{a}r$, M.;Schumacher, E.
  7. J. Chem. Phys. v.80 Peterson, K. I.;Dao, P. D.;Farley, R. W.;Castleman, Jr., A. W.
  8. Molecular Spectra and Molecular Structure. Ⅳ. Constants of Diatomic Molecules Huber, K. P.;Herzberg, G.
  9. J. Phys. Chem. v.65 Wu, C. H.
  10. J. Phys. Chem. v.87 Wu, C. H.
  11. Chem. Rev. v.91 $Bonaci\'{c}-Kouteck\'{y}$, V.;Fantucci, P.;$Kouteck\'{y}$, J.
  12. J. Chem. Phys. v.82 Thompson, T. C.;Izmirlian, G.;Lemon, S. J.;Truhlar, D. G.;Mead, C. A.
  13. J. Phys. Chem. v.86 Richtsmeier, S. C.;Dixon, D. A.;Gole, J. L.
  14. J. Chem. Phys. v.112 Yoon, J.;Kim, K. S.;Baeck, K. K.
  15. J. Chem. Phys. v.73 Beckmann, H. O.;$Kouteck\'{y}$, J.;$Bonaci\'{c}-Kouteck\'{y}$, V.
  16. J. Phys. Chem. v.87 $Plavsi\'{c}$, D.;$Kouteck\'{y}$, J.;Pacchioni, G.;$Bonaci\'{c}-Kouteck\'{y}$, V.
  17. J. Chem. Phys. v.80 Fantucci, P.;$Kouteck\'{y}$, J.;Pacchioni, G.
  18. Chem. Phys. Lett. v.186 Simard, B.;Hackett, P. A.;James, A. M.;Langridge-Smith, P. R. R.
  19. Chem. Phys. Lett. v.193 Kr\"{a}mer$, H. G.;Beutel, V.;Weyers, K.;$Demtr\"{o}der$, W.
  20. J. Chem. Phys. v.104 Okazaki, T.;Saito, Y.;Kasuya, A.;Nishina, Y.
  21. J. Phys. Chem. A v.101 Boo, D. W.;Ozaki, Y.;Andersen, L. H.;Lineberger, W. C.
  22. J. Chem. Phys. v.102 Handschuh, H.;Cha, C.-Y.;Bechthold, P. S.;$Gantef\"{o}r$, G.;Eberhardt, W.
  23. J. Chem. Phys. v.83 Hay, P. J.;Martin, R. L.
  24. J. Chem. Phys. v.86 Martin, R. L.
  25. J. Chem. Phys. v.98 $Bonaci|'{c}-Kouteck\'{y}$, V.;e piva, L.;Fantucci, P.;Kouteck, J.
  26. J. Chem. Phys. v.100 $Bonaci|'{c}-Kouteck\'{y}$, V.;Cespiva, L.;Fantucci, P.;Pittner, J.;$Kouteck\'{y}$, J.
  27. J. Chem. Phys. v.62 Baetzold, R. C.;Mack, R. E.
  28. J. Chem. Phys. v.68 Baetzold, R. C.
  29. Theor. Chim. Acta v.72 Edwards, W. D.;Zerner, M. C.
  30. ZINDO Package, Quantum Theory Project Zerner, M. C.
  31. Chem. Phys. Lett. v.122 Head, J. D.;Zerner, M. C.
  32. Chem. Phys. Lett. v.131 Head, J. D.;Zerner, M. C.
  33. J. Quantum Chem. v.26 $Esti\'{u}$, G. L.;Zerner, M. C.
  34. J. Chem. Phys. v.58 Walch, S. P.;Bauschlicher, Jr., C. W.;Langhoff, S. R.
  35. J. Phys. Chem. v.89 Ross, R. B.;Ermler, W. C.
  36. J. Chem. Phys. v.91 Bauschlicher, Jr., C. W.;Langhoff, S. R.;Partridge, H.