은닉노드의 특징 값을 기반으로 한 최적신경망 구조의 BPN성능분석

Performance Analysis of Optimal Neural Network structural BPN based on character value of Hidden node

  • 강경아 (조선대학교 대학원 전산통계학과) ;
  • 이기준 (조선대학교 대학원 전산통계학과) ;
  • 정채영 (조선대학교 자연과학대학 전산통계학과)
  • 발행 : 2000.06.01

초록

은닉노드는 주어진 문제에서 입력패턴(input pattern)들의 특징을 구분해주는 중요한 역할을 한다. 이 때문에 최적의 은닉노드 수로 구성된 신경망 구조가 성능에 가장 큰 영향을 주는 요인으로 중요성이 대두되고 있다. 그러나 역전파(back-propagation) 학습 알고리즘을 기반으로 하여 은닉노드 수를 결정하는데는 문제점이 있다. 은닉노드 수가 너무 적게 지정되면 주어진 입력패턴을 충분히 구분할 수 없게 되어 완전한 학습이 이루어지지 않는 반면, 너무 많이 지정하면 불필요한 연산의 실행과 기억장소의 낭비로 과적응(overfitting)이 일어나 일반성이 떨어져 인식률이 낮아지기 때문이다. 따라서 본 논문에서는 백 프로퍼게이션 알고리즘을 이용하여 학습을 수행하는 다층 신경망의 학습오차 감소와 수렴율 개선을 위하여 신경망을 구성하는 매개변수를 가지고 은닉노드의 특징 값을 구하고, 그 값은 은닉노드를 제거(pruning)하기 위한 평가치로 사용된다. 구해진 특징 값 중 최대 값과 최소 값을 갖는 노드를 감소(pruning)대상에서 제외하고 나머지 은닉노드 특징 값의 평균과 각 은닉노드의 특징 값을 비교하여 평균보다 작은 특징 값을 갖는 은닉노드를 pruning시키므로서 다층 신경망의 최적 구조를 결정하여 신경망의 학습 속도를 개선하고자 한다.

The hidden node plays a role of the functional units that classifies the features of input pattern in the given question. Therefore, a neural network that consists of the number of a suitable optimum hidden node has be on the rise as a factor that has an important effect upon a result. However there is a problem that decides the number of hidden nodes based on back-propagation learning algorithm. If the number of hidden nodes is designated very small perfect learning is not done because the input pattern given cannot be classified enough. On the other hand, if designated a lot, overfitting occurs due to the unnecessary execution of operation and extravagance of memory point. So, the recognition rate is been law and the generality is fallen. Therefore, this paper suggests a method that decides the number of neural network node with feature information consisted of the parameter of learning algorithm. It excludes a node in the Pruning target, that has a maximum value among the feature value obtained and compares the average of the rest of hidden node feature value with the feature value of each hidden node, and then would like to improve the learning speed of neural network deciding the optimum structure of the multi-layer neural network as pruning the hidden node that has the feature value smaller than the average.

키워드