Effects of Rhus verniciflua Stokes (RVS) on Cell-associated Detoxificant Enzymes and Glucose Oxidase-mediated Toxicity in Cultured Mouse Hepatocytes

  • Lim, Kye-Taek (Biodefensive Substance Group, Institute of Biotechnology, Chonnam National University) ;
  • Lee, Jeong-Chae (Biodefensive Substance Group, Institute of Biotechnology, Chonnam National University) ;
  • Jung, Hee-Young (Biodefensive Substance Group, Institute of Biotechnology, Chonnam National University) ;
  • Jo, Sung-Kyun (Biodefensive Substance Group, Institute of Biotechnology, Chonnam National University)
  • Published : 2000.06.01

Abstract

The ethanol extract of Rhus verniciflua Stokes (RVS), the Korean Lacquer tree, was subsequentely isolated and fractioned into two portions using distilled water (SED) and 99% ethanol (SEE) as elution buffers through silica gel column (4x28 em, 22 $\AA$. 28~200 mesh). To know the antioxidative effect of the RVS extracts, primary hepatocytes were exposed to hydroxyl radical generated by 20 mU/$m\ell$ glucose oxidase with SED or SEE for 4 hr. The addition of 100$\mu\textrm{g}$/$m\ell$ SED in culture medium showed good protection from glucose oxidase (GO)-mediated cytotoxicity of hepatocytes, showing approximately equivalent to control. When the hepatocytes were incubated with 100 $\mu\textrm{g}$/$m\ell$ SED or SEE only for 4 hr. the activities of cell-associated superoxide dismutase (SOD) and catalase were elevated up to 1.22 fold and 1.4 fold, respectively, compared to control. Further increase, 1.88fold in SOD activity or 1.64fold in catalase activity, was also observed when the hepatocytes were incubated with 100 units/$m\ell$ of commercial SOD or catalase for 4 hr. Moreover. the glucose oxidase-mediated cytotoxicity in cultured hepatocytes was generally reduced upon addition of lysate obtained from SED or SEE-stimulated hepatocytes in a dose-dependent manner. From these results, we suggest that, in cultured hepatocytes, RVS ethanol extract can efficiently reduce cytotoxicity induced by glucose oxidase and may increase the activity of cell-associated SOD and/or catalase, thereby preventing and/or scavenging superoxides and hydroxyl radicals in this experiment.

Keywords