Relevance Feedback for Content Based Retrieval Using Fuzzy Integral

퍼지적분을 이용한 내용기반 검색 사용자 의견 반영시스템

  • Published : 2000.12.01

Abstract

Relevance feedback is a technique to learn the user's subjective perception of similarity between images, and has recently gained attention in Content Based Image Retrieval. Most relevance feedback methods assume that the individual features that are used in similarity judgments do not interact with each other. However, this assumption severely limits the types of similarity judgments that can be modeled In this paper, we explore a more sophisticated model for similarity judgments based on fuzzy measures and the Choquet Integral, and propose a suitable algorithm for relevance feedback, Experimental results show that the proposed method is preferable to traditional weighted- average techniques.

영상의 유사성에 대한 사용자의 주관적인지를 학습하는 방법으로 relevance feedback 기술이 사용되며, 최근 들어 이에 대한 관심이 높아지고 있다. 대부분의 relevance feedback기술은 영상 유사성을 측정하는데 사용되는 특징이 서로 독립적이라는 가정하고 있으나, 이러한 가정은 유사성 판단을 모델링 하는데 있어서 상당한 제약을 두는 것이다. 이 논문에서는. 퍼지 측정과 Choquet 적분을 이용하여, 유사성 판단에 대한 보다 나은 모델링 방법을 제안하고, 이를 이용한 relevance feedback 알고리즘을 제안한다. 실험결과를 통하여, 기존의 가중치 평균 방식에 의한 relevance feedback보다 제안된 방식이 우수함을 보인다.

Keywords