Abstract
In this article we discuss some aspects of operational Tau Method on delay differential equations and then we apply this method on the differential delay equation defined by $\omega(u)\;=\frac{1}{u}\;for\;1\lequ\leq2$ and $(u\omega(u))'\;=\omega(u-1)\;foru\geq2$, which was introduced by Buchstab. As Khajah et al.[1] applied the Recursive Tau Method on this problem, they had to apply that Method under the Mathematica software to get reasonable accuracy. We present very good results obtained just by applying the Operational Tau Method using a Fortran code. The results show that we can obtain as much accuracy as is allowed by the Fortran compiler and the machine-limitations. The easy applications and reported results concerning the Operational Tau are again confirming the numerical capabilities of this Method to handle problems in different applications.