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A Note on Representations for
Irreducible Characters of Finite Groups
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Abstract

In this paper we prove that for all irreducible complex characters of a finite group,
there exist F-representations and a finite degree field extension F 2@, where
® is the rational number field.

0. Introduction

Representation theory has its origin in the study of permutation groups and algebras
of matrices. It is understood as concrete realizations of axiomatic system of abstract
algebras. In particular, the theory of group representations was astonishingly well
established by G. Frobenius in the last two decades of nineteenth century and it was
realized by both Frobenius and Burnside that the theory plays an important role in the
theory of abstract finite groups. G. Frobenius initiated the study of complex
representations and characters, and the representation theory of finite groups by matrices
over the complex field was mainly the work of Frobenius together with significant
contributions by I. Schur. In fact, there are some important results, such as Frobenius
theorem which had not been proved without introduction of characters. Along with
Frobenius’ work, the book by Burnside in 1911 was the first one to give a systemic
approach to representation theory. Also it contains many results on abstract groups

which were proved using group characters. Among those, the most famous one might

be Burnside’s p* qb theorem. Not long ago, purely group-theoretic proof of the theorem

has been obtained by Thompson. Such a proof is of course important for the structure
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theory of groups. However, it is at least as complicated as the original proof by group
characters.

In 1929, N. Noether has observed in [8)] that representation theory can be understood
by the study of modules over rings and algebras. The representation theory of rings
and algebras has led to new insights in the classical theory of semisimple rings and to
new investigations of rings with minimum condition centering around Nkayama’'s theory
of Frobenius algebras and quasi-Frobenius rings.

R. Brauer's work on modular representations of finite groups is another major
development in representation theory and it has many important applications to the
theory of finite groups. It also draws on the representation theory of algebras and
suggests new problems on modules and rings with minimum condition.

During 1950-1960, the theory of integral representations of groups and rings initiated
some of problems and conjectures both in homological algebra and in the arithmetic of
non-commutative rings. After the decade, another subject, algebraic K-theory exerts a
strong influence on integral representation theory. In 1970’s topological K-theory has
been developed and applied to Atiyah-Singer Index theorem. This topological K-theory
holds some nice property, so called Bott periodicity and this generalized homology theory
is in some sense simple. Algebraic K-theory was guided by the topological K-theory
and it can be viewed as an algebraic reformulation of the K-theory. However algebraic
K-theory dose not hold the periodicity theorem. So it is more complicated than
topological K-theory. Contrast to such complication algebraic K-theory suggested new
problems of major importance in representation theory. These solution has led to fresh
applications to topology and algebraic number theory.

As a final historical note, there is another interaction between representation theory
and geometry. This has occurred in the representation of finite groups of Lie type. In
the examples where character tables were known, there were certain representations that
were difficult to construct by standard methods. In a dramatic breakthrough, Deligne
and Lusztig found general methods for constructing these and other representations
through a systematic study of actions of groups on algebraic varieties.

The purpose of this paper is to prove some properties of representations for
irreducible complex characters[Propositions 2.1 and Theorems 2.2, 2.3].

Throughout this paper, every group ( is a finite group and every character of a
group G means a complex character. Let I»#{G) be the set of all irreducible complex

characters of G.
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1. Preliminaries

Let F be a field and let A be an F-vector space which is also a ring with unity 1. If
(cx)y= c{xy)=x(cy) for all ¢c=F and x,y= A, then A is an F-algebra In this
paper, A means a finite dimensional F-algebra (i. e. as an F-vector space, it has a
finite dimension).[7]

Let A be an F-algebra and let V be a finite dimensional F-vector space. For all
x,yv€A, v, weV and c= F, if the followings are hold;

(@ x(v+tw)=xv+axw,

(b) (x+y)v=xv+yv,

©) x(yv)=(xy)v,

(d (ex)v=c(xv)=x(cv),

(e) lv=uv,
then V is called an A-module.7]

Definition 1.1. Let V be a nonzero A-module. Then V is irreducible if it has only
two submodules {0} and V, where A is an F-algebra.

Definition 1.2. Let V be an A-module. If for every submodule W of V, there exists
another submodule U of V such that V= W@ U (€ means direct sum), then V is

completely reducible.

Lemma 1.3. Let A be an F-algebra and let Vi,---,V,, W,--, W, be A-module. If
V=VvV®---®V, W= WD--PW, be A-modules, then

Hom(Vy, W) -~ Homs(V,,, W)
Homa (V, W) = : :
Hom(Vy, W,,) === Homa(V,, W,,)

is an F-vector space.
In particular, if V™ = V@@ V(% copies), then End,( V™) = Mat,(Enda(V))

is an F-algebra.

Proof. For :=1,2, -, m, j=1,2,--, n, let €;: V; => V be the natural injection
defined by ¢;(v;)=(0, ---,0, v;, 0, =-,0) and let z;: W—W, be the natural

projection defined by m;(w;, ***, w,)=w;. Then g; and 7; are A-homomorphism. If
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for each 7 and j, ¢; € Homa(V;, W;), then we can define a ¢ € Homa(V, W) by

for all v;eV,

¢(v)=¢(vl+-"+vn)=[

=(dn(v)+ -+, (v,)+ -+ dp(v))+ -+ d,(v,)).
Conversely, if ¢ €eHoma(V, W), then ¢,=n;° ¢ ;€ Homa(V;, W;) and

[ ¢ll ...... ¢1"‘ [ ?1
¢m.l """ ;¢mn 7-;71

So the proof is compiete. R

= (v, ++v,) = ¢(v), for all v;e V;.

Lemma 1.4. Let A be an F-algebra and let V be a completely reducible A-module. If
B=Ends(V), then for each v V and f< Endg( V), there is an a= A such that

av = f(v).

Proof. Since V is a completely reducible and Av={av | a€ A} is a submodule of
V, there is some submodule W such that V=Av@®W. Let n: V—>Av be the
projection, then 7 & End,V = B. And since f& Endg(V) and n{v)=v thus f(v)=

Ar(w)=n(f(v)) € x(V)=Av. O

Proposition 1.5. Let A be an F-algebra and let V be an irreducible A-module. If
B=FEnd,(V), f€ Endg(V), and v, -, v, € V, then there is an a& A such that

av;=f(v;) (i=1, -, n).

Proof. Denote VP =V®--@®V (n copies) and define f™: vy by
v+ +v,)=Ffv)++fv,) for all wv;, f(v;)€ith summand V. Denote
B’ = Ends(V™). Given any ¢& B, by Lemma 1.3 there are ¢, = End,(V) = B.
Hence we see f(")(¢(vl+ et u,))= ¢(f(")(111+--- +2,)), f™e Endg( V™). By
Lemma 14, there is an a€ A such that a(v;+ - +v,)=F"(v,++v,)=F(v;)+
v+ f(v,) for al v; f(v;)€ith summand V. Thus av;=f(v;) for all ¢
(i=1, -, n). ]
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Definition 1.6. An algebra A is semisimple algebra if its regular module A° is
completely reducibleti. e. A=L,®---DL,,, where L; is irreducible left ideal ).

Lemma 1.7. Let A be an finite F-algebra. Then A is semisimple algebra iff every

A-module is completely reducible.

Proof. Suppose that A is semisimple. Note that left ideals of A are exactly the
submodule of A° Let A=L,®--®L,(L; is irreducible left ideal) and let

V=Fvu,®®Fv,. Then V=AV= ngLiv,-. For each i, j, the map

f:L;— L,v; defined by f(a)=av; is a surjective A-homomorphism. Since L; is
irreducible, either L,v;={0} or L,v;=4L,;,. Thus V is sum of finite irreducible
A-modules, so is completely reducible.

Conversely, suppose that every A-module is completely reducible. Then A is clearly
semisimple. N

Proposition 1.8. Let A be a finite semisimple F-algebra. Then the followings hold.

(1) A has only finitely many nonisomorphic irreducible left ideals L., *--, L.

(2) If A, is the sum of all left ideals of A isomorphic to L;, then A; is a two-
sided ideal in A and a finite simple F-algebra.

3) A=®D;_,A;

(4) If 1=e++e, then A; has a unit element e, eA=A;= Ae;. (i¥#J]
implies A;A;=0).

Proof. Let {L,| i=1I} be the set of representatives of all isomorphism classes of
simple left ideals, and define A; = 2 {LSA| L=4L;} for all ie I Now let V be
an irreducible A-module. Then AL;V=L;V is a submodule of V, and so either {0} or
V. If it is V, choose ve V, L,v#+{0}. L;v is an A-submodule of V, so L,v=V.
Thus L =4V since L is irreducible as A-module. Hence i# j implies A;A;={0}. Of
course A=;A,~, so A;,SAA=A;A; S AA,=A;, proving that each A; is a

two-sided ideal. Write 1= Ze:le[, e, €A, so all but finitely many e; are 0, say
H
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l=e 4+ +e, (e,#0, e;€ A). If xe A,, keI—{1, -, s}, then x=1lx= (e +--
+e,)x=0 proving (1).

If 0=x+--+x,, x,€ A, then 0=efx;+-+x)=¢eux,+ - +ejx,;=ex;=(e;+
-+ e.)x;=1x;=x; for all j, so (3) holds. Thus we see ¢;is a unit in Aj, so (4) has
been checked. Any simple left ideal of A; is a simple left ideal of A, and so by

construction is isomorphic to some L;. Hence (2) holds. O

Let D be a division ring, D denotes the opposite division ring to D, that is, D”
has the same underlying set and addition as D. But a multiplication - is given by

x°y = yx. Let A be a finite F-algebra, and let a= A. The map ¢,: A — A defined
by ¢.(x)=2xa is an A-homomorphism. Thus the map A% — End,(A) defined by
a— ¢, is an algebra isomorphism. So Ends(A) = End,s(A°) = A®”[5] Now let D

be an F-division algebra and let V be an n-dimensional D-vector space. Let
{vy, -, v,} be a D-basis for V, then V=Duy,@®---@Dv,=DP---@®D (as

A-module). Thus by Lemma 1.3, Endp( V) = Mat,( Endp(D) ) = Mat,(D”).

Proposition 1.9. Let A be a finite simple algebra, V an irreducible A-module. If
D=End,(V), then A= End (V)= Mat,(D?) where n=dimpV< dimzV.
In particular, if F is an algebraically closed field, then A = Endr( V) = Mat,(F)

where n= dimgV.

Proof. By Schur Lemmal7], D = Ends (V) is a finite F-algebra and V is a
D-vector space. If we define a map ¢: A— Endp( V) by ¢(a)(v)=av, then ¢ is an

F-algebra homomorphism. Since A is simple algebra Ker ¢ = {0} and thus ¢ is one
to one. Now let fe Endp(V) and let {v, *-, v,} be D-basis for V. Then by

Proposition 1.5 there exists an @€ A such that f(v;)=av; for i=1, ---, n. Thus for
all veV, we have flv)=av=¢(a)v), so f= ¢(a)eimp. Hence
Endp( V) S im¢, thus Endp(V) S im¢p=A. Therefore A= End (V)= Mat,(D?).
In particular, if F is an algebraically closed field, then D = Ends( V)= F. Thus
A= Endp(V)=Mat,(F), n= dimgV. OJ
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Theorem 1.10. Let G be a finite group and let F be an algebraically closed field of
characteristic not dividing | G|. Then F[G1= Mat, (F)D-- ®Mat,(F) where
| G) = n,2+ -+ n2. F[G] has exactly s-nonisomorphic irreducible modules of

dimension #,, ***, #;, and s is the number of conjugacy classes of G.

Proof. By Maschke's Theorem[4, 5 7). F{Gl is a semisimple algebra. Let V; be the
irreducible F{ G]-module. Then by Proposition 1.8, F{G] has s-nonisomorphic
irreducible  F{ G]-modules Vi, =-», V, and thus by Proposition 19, F[G]l=
Mat, (F)®-- @ Mat,(F), n;=dimpV;. Thus dimF[G]= dimMat,(F)+--+
dimMat,(F) and so we have |Gl= n,°+-++ n’. Let Z be the center of F[G].
Since Z(Mat, (F))={al| asF}=F, therefore dim zZ(F[G]) = s. For each conju-
gacy class 6 ; of G, let C;= xéixEF[G]. If geG then g 'C;g= C; so all

C;eZ. The C; are obviously F-linearly independent elements of FIG]. If
}—'_,GaggEZ for some a,€F, then for any heG, 2ag=h" (Dah=2ah 'gh.
ge

This means a@,= &, 1, and implies that Zagg is an F-linear combination of the C,
{C;} is an F-basis of Z, so s= dim pZ=the number of C,'s =number of conjugacy

classes of G. U

Let F be a field, and let G be a finite group. A representation 7T : G—>GL,(F) is a
group homomorphism, where GL,(F ) is the general linear group of #X n matrices on

F. In this case #» is called the degree of the representation 7. It is easy to construct
modules from representations and representations from modules.[7]

Let M be an FIGl-module with a finite dimension # as an F-vector space where
F{G] is a group algebra. Let a representation T : G— GL,(F) correspond to M, i. e.
for each veM and g€G, vg= vT(g). If M is an irreducible FI G]-module, then
the representation T is said to be irreducible. We put 6(g)=tr7(g), the trace of
Tg), then ¢ is called a character afforded by T . If T is irreducible then 6 is also
said to be irreducible. Let I»#{G) be the set of all irreducible complex characters.
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2. Main Results

Let FFS E be a field extension and let T be an F-representation of a group G into a

group of nonsingular matrices over F that, of course, are also nonsingular over E. We
may, therefore, view T as an E-representation of . As such we denote it by TE 1f
T, and T, are similar F-representations of G, then 7T,% and T," are similar and it
follows that if T corresponds to the F[ G]-module V, then there is a uniquely defined
E[Gl-module V% (Note VZ= V@ pE). We shall not, however, need to refer to V%
again, since it is usually easier to work with the representation TE. The

F-representation T of G may be extended by linearity to obtain a representation of
FIG], which we shall continue to call T. Under this convention, the FE[G]

-representation T% is an extension of the F[ G}-representation T. If T is irreducible,

then clearly so is 7. However, TE may well reducible, even if T is irreducible.

Proposition 2.1. Let F be a subfield of the complex number field C, and let
6= Ir”{G). If there exists an F-representation 7, that affords 6, then these

representations 7 are pairwise nonsimilar and every irreducible F-representation of G

is similar to one of the T, .

Proof. Let 4, ¢ Irr(G) and let Ty and T, be the F-representations of G that
afford & and ¢, respectively. Suppose Ty and T, are similar. Then there is a non-
singular P such that T,9=P_1T¢P. Thus for all g€ G, we have 8(g) =trTy(g2)
=tr(P"'Tyg)P)=trT,(g)=¢(g) so O=¢. Therefore the different characters are
afforded by nonsimilar representations.

Now let T be an irreducible F-representation of G that affords 6. Since F&C, T is

also a C -representation of G and hence 8 is a C-character of G. Thus we may put
6=6,+--+6, (6, Irr(G)). If T, is the corresponding F-representation that afford

8; for each i=1,--,s, then for g€ G, 7T(g) is similar to a matrix transformation of

the form
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Te(g) 0 - 0
0 . "'.Tes( 2
But T is an irreducible F-representation. Thus T is similar to one of the T4, U

Theorem 2.2. Let F be the field of all algebraic elements of C. Then there exist
F-representations Ty for all 8 < Irr1{G).

Proof. Let T be the C-representation of G that affords 6. Let M and N be the
corresponding irreducible C[ Gl-module and F[G]-module, respectively. Write C[G]

=B PJ, and FIG]=1D---D@I,, where J; and I; are minimal two-sided ideals
and 7 is the number of conjugacy classes in G. Note that C{GI=F{ G]®r C which

is the tensor product of algebras,[3] By Wedderburn—-Artin theorem([8], we get J;=
ED,f-":lM,-j, and dim ¢ J; = f;* where f; = dim ¢M; and Ma=M,=--= M;; are irredu-

"2 where

cible one-sided ideals. Similarly, we have I;=€@® ,-f;lN,-,-, and dim¢ I; = f;
fi = dim cN; and N; =N;;=---= N; ;. Note that N;&®rC are one-sided ideals in
F{GI®rC. By uniqueness, up to an isomorphism, of the representation of C[G] as a

direct sum of minimal one-sided ideals it is easy to see that f;= f; and
M=N;®rC. In particular, M=N ®r C for some irreducible(minimal) one-sided ideals
of F{G]. Let f= dim M = dimzN. Consider S:G— GL;(F) be the irreducible
F-representation corresponding to N, then

sll(g) ...... slf(g)
S(g) = : :

salg) e sy(g)
If {e, ,es} is a basis for N, then e,g= i;e,-s,-,'(g). Since {¢;®1, -+, ¢,®1} is a
~

basis for N®rC, S can be viewed as a C-representation of G corresponding to
N®rC =M Thus T and S are similar C -representations of G since they induce iso-

morphic C [ G]-module structures. It follows that they afford the same character . [

Theorem 2.3. There exists a finite degree field extension F 2 @ such that

F-representations 7Ty exist for all f=Ir{G), where Q is the rational number field.
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Proof. Let Q be the algebraic closure of Q@ in C. By Theorem 2.2, for each
0= IrKG), there is a Q -representation T, that affords 6. Let A be the set of all

entries in Q, then A is a finite set of algebraic numbers. Let F=Q[A]. Then F is the

field generated by finitely many elements of C that are algebraic over Q. It follows

that [F:Q) ¢ oo. Moreover T, is, in fact, F-representation that affords 6. O
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