Decentralized $H_\infty$ Control with Performance for Uncertain Linear Interconnected Systems with Time Delay

시간 지연을 갖는 불확실 대형 연결 시스템의 분산 $H_\infty$ 제어

  • 심덕선 (중앙대학교 전자전기공학부) ;
  • 김연재 (중앙대학교 전자전기공학부)
  • Published : 2000.05.01

Abstract

This paper considers the decentralized control problem of linear time-invariant interconnected systems with delays. A decentralized output-feedback controller to obtain both stability and performance of the interconnected system is designed using the standard $H_\infty$ control theory, This paper provides sufficient conditions for such a controller to exist and provides an output feedback controller.

Keywords

References

  1. K. Watanabe, E. Nobuyama, and A. Kojima, 'Recent advances control of time delay systems : a tutorial review,' Proceedings of IEEE Conference on Decision and Control, pp. 2083-2089, 1996 https://doi.org/10.1109/CDC.1996.572898
  2. Z.-H. Guan, 'Robust stability of impulsive large-scale time-varying interval delay systems,' Proceeding of 13th Triennial World Congress, San Francisco, USA, pp. 119-124, 1996
  3. Z. Hu, 'Decentralized stabilization of large scale interconnected systems with delays,' IEEE Transactions on Automatic Control, vol. 39, pp. 180-182, Jan. 1994 https://doi.org/10.1109/9.273363
  4. Y. Jing, P. Yuan, and G. M. Dimirovski, 'Decentralized control of linear composite systems with delays,' Proceedings of IEEE Conference on Decision and Control, (Kobe, Japan), pp. 3447-3452, 1996 https://doi.org/10.1109/CDC.1996.573694
  5. Lee, T.N., and Radovic, U.L, Decentralized Stabilization of Linear Continuous and Discrete-Time Systems with Delays in Transactions on Automatic Interconnections, IEEE Control.,Vol. 33, pp. 757-761, 1988 https://doi.org/10.1109/9.1293
  6. H. Wu, 'Decentralized output feedback control of large scale interconnected time-delay systems,' Proceedings of IEEE Conference on Decision and Control, pp. 1611-1616, 1996 https://doi.org/10.1109/CDC.1996.572760
  7. Y. Wang, L. Xie, and C. E. de Souza, 'Robust decentralized control of interconnected uncertain linear systems,' Proceedings of IEEE Conference on Decision and Control, pp. 2653-2658, 1996 https://doi.org/10.1109/CDC.1995.478512
  8. Y. Wang, L. Xie, and C. E. de Souza, 'Robust control of a class of uncertain nonlinear systems,' System & Control Letters, vol. 19, pp. 139-149, 1992 https://doi.org/10.1016/0167-6911(92)90097-C
  9. I. R. Petersen, 'Disturbance attenuation and $H_{\infty}$ optimization: A design method based on the algebraic riccati equation,' IEEE Transactions on Automatic Control, vol. AC-32, pp. 427-429, May 1987 https://doi.org/10.1109/TAC.1987.1104609
  10. K. Zhou and P. P. Khargonekar, 'An algebraic Riccati equation approach to $H_{\infty}$ optimization,' System & Control Letters, no. 11, pp. 85-91, 1988 https://doi.org/10.1016/0167-6911(88)90080-1
  11. Doyle, J.C., Glover, K., Khargovekar, P.P. and Francis, B.A., 1999, 'State-space Solutions to Standard $H_2$ and $H_{\infty}$ Control Problems,' IEEE Trans. on Automatic Control, Vol. 34, No. 8, pp. 831-847 https://doi.org/10.1109/9.29425
  12. M. G. Satonov, D. J. N. Limebeer, and R. Y. Chiang, 'Simplifying the $H_{\infty}$ theory via loop-shifting, matrix pencil and descriptor concepts,' International Journal of Control, vol. 50, no. 6, pp. 2467-2488, 1988
  13. P. P. Khargonekar, I. R. Petersen, and K. Zhou, 'Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_{\infty}$ control theory,' IEEE Transactions on Automatic Control, vol. 35, no. 3, pp. 356-361, 1990 https://doi.org/10.1109/9.50357