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Abstract. This paper considers an aperiodic preventive maintenance
(PM) model for repairable systems, in which the time intervals between
two consecutive preventive maintenances are unequal. To propose such
an aperiodic PM model, we assume that each PM reduces the current
hazard rate by a certain amount which depends on the number of PMs
performed previously. If the system fails between PMs, the minimal re-
pair is performed and the hazard rate remains unchanged after the repair.
We give the exact expressions for the hazard rate function for the aperi-
odic PM model. Based on the proposed aperiodic PM model, we suggest
the maximum likelihood method to estimate the parameters characteriz-
ing the model and apply the method to the case of Weibull distribution.
Numerical examples for estimating the parameters are presented for the
purpose of illustration.
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1. INTRODUCTION

Preventive maintenance (PM) is used to slow the degradation process of the
repairable system and keep the system operating without failure during its mission
period. Since most of the repairable systems are subject to deteriorate with time
in practice, efficient maintenance of the system is critical to reduce the failure of
the system and to improve the productivity of the system. Thus, it is desirable to
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develop a PM model, under which the system keeps its operation at the necessary
level of reliability and the operating cost is minimized over a finite time span.

Because of the wide range of applications and great importance of the PM pol-
icy in reliability theory, many authors have studied the problem of modeling the
PM policies and of choosing an optimal PM policy by minimizing the average cost
per unit time of operating the system. Malik(1979) proposes a general approach
to model the improvement effect of maintenance and introduces improvement fac-
tor in the proportional age reduction model with a reliable preventive maintenance
scheduling. The measure of PM effect is explained by the proportion of reduced
age, which is referred to as improvement factor. Shin, Lim and Lie(1996) employ
the maximum likelihood method to estimate the parameters of the failure process
and the maintenance effect in Malik’s proportional age reduction model. Naka-
gawa(1979) proposes several optimal policies when the PM is imperfect. Murthy
and Nguyen(1981) study the optimal age replacement policy with imperfect preven-
tive maintenance. The preventive is imperfect in the sense that it can cause failure
of a non-failed system. Nakagawa(1986) studies both periodic and sequential PM
policies to determine the optimal PM intervals and the optimal number of PMs to
be performed before replacing the system by a new one.

This paper extends the periodic PM model proposed by Canfield(1986) to the
case when the system undergoes the PMs at different intervals. Canfield(1986) dis-
cusses a periodic PM model of a system for which the PM slows the rate of degra-
dation, while the hazard rate keeps monotone increase. Park, Jung and Yum(2000)
determine the optimal period and the optimal number of PMs for Canfield’s(1986)
periodic PM model so that the expected cost rate per unit time for an infinite
time span is minimized. In this paper, we propose an aperiodic PM model (Nak-
agawa(1986) called it sequential PM model), for which the system is maintained
preventively at constant intervals zx(k = 1,2,--- , N) and is replaced by a new sys-
tem at the Nth PM. Each PM is assumed to relieve stress temporarily and to slow
the degradation process of the system. If the system fails between PMs, it under-
goes only minimal repair and hence, the hazard rate remains unchanged after any
of these minimal repairs is completed. Since the effect of PM may depend not only
on the age of the system, but also on the number of PMs performed previously, it
is more reasonable to perform the PMs at different intervals to make the PM policy
more effective.

In Section 2, we present the assumptions and the exact expressions for hazard
rate function to propose a new aperiodic PM model. Section 3 estimates the param-
eters characterizing the aperiodic PM model by applying the maximum likelihood
method. We give more detailed discussions of the method when the failure time of
the system follows Weibull distribution. Section 4 presents two numerical examples,
simulation results and real data analysis, to explain the proposed method.

2. ASUMPTION AND APERIODIC PM MODEL
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Assumptions

1) The system is maintained preventively at constant intervals zj (k = 1,2,

- ,N) and is replaced by a new system at the Nth PM. Thus, the PM is

done at successive times 0 < 21 < 21+ 22 < :-- <z + 22+ -+ + zx and the
system is replaced at time z; + 22 + -+ + ZN.

2) If the system fails between PMs, it undergoes only minimal repair and hence,
the failure rate remains undisturbed by any of these minimal repairs.

3) Each PM reduces operational stress to that existing 7, time units previous
to PM intervention, where 7 is the restoration interval which is less than or
equal to z, the PM intervention interval.

4) The level of system hazard function depends on the extent of system degrada-
tion.

Let F' denote the life distribution function with its corresponding density function
f and let F(t) =1 — F(t) be its survival function. Then, we have

Definition 1. The hazard rate of a life distribution F' is defined as

for ¢t such that F(t) > 0 if f(t) exists.

Definition 2. A life distribution F is IFR(DFR) if h(¢) is nondecreasing (nonin-
creasing) in ¢t > 0.

In this paper, we consider only the case when h(t) is strictly increasing and thus,
the system degrades as it ages. If the system wears out with time, the rationale for
the proposed aperiodic PM model is that it may need more frequent maintenances
to the extent that budget and man power permit. Let z; and y, be the time interval
between the (k — 1)st and the kth PM and the kth PM time, respectively. That
is, yp = Zle z;. In addition, we let 7, and p; be the restoration interval and
the improvement factor at the kth PM. Thus, we assume that 7, = prz ,where
0 < pr < 1. We use h(t) and hk (2) to denote the hazard rate without PM and the
hazard rate between the kth and the (k + 1)st PM, respectively. When the kth PM
is performed effectively at time yj, the hazard rate function changes from h';;ll(t)
to h’;m(t), where h’,ﬁ;,l(t) > h';m(t) forallt >y, for k=1,2,--- ,N.

For Canfield’s(1986) periodic PM model, the PM reduces operational stress to
that existing 7 time units previous to the PM intervention, where 7 is a restoration
interval. Thus, the hazard rate under Canfield’s model is given as

hp(t) = hp(kAt) + h(t — kt) — h(k(At — 7)) (2.1)
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fork =0,1,2,---, where kAt < t < (k+1)At and h,(0) = h(0). By assumptions (1)
and (3), we generalize Canfield’s model to the case when the PMs are performed at
different intervals. Applying (2.1), the hazard rate under the aperiodic PM model
is defined as

- 1(2[::%) +h(t— gn) - h{g(fni "Ti)}

e
for Yz <t< Y @i, k=0,1,2,---. (2.2)
i=1 i=1
By substituting recursively, (2.2) can be rewritten as
'Mﬂ, for0 <t <z
h —-7j)t+z
R () =1 £ Z{ (Z 2 ’) | (2.3)
i k k+1
_h(Z(xj - Tj)) }—i—h(t - Zn), for Zmz <t< sz
\ j=1 i=1

If we set 7y = 7 and zy = z for all k, then (2.3) is reduced to the following failure
rate, which is equivalent to (2.1) by replacing z by At.

h(t), for0<t<z

k
Bt = 4 S {Ai = (@ = 7) +2) (2.4)
i=1
—h(i(z — 7'))} +h{t—kr), forkz<t<(k+1l)z

Furthermore, if we let 7, = zx = 7 = z for all k, then the PM is performed
periodically and the restoration interval at each PM is equal to the periodic PM
interval. In this case, (2.3) is reduced to

k() — h(t), for0<t<«z
pm(t) = k{h(z) = h(0)} + h(t —kz), forkz<t<(k+1)z

The hazard rates (2.4) and (2.5) have been proposed and studied by Canfield(1986).
In addition to the different PM intervals, we generalize the hazard rate model, given
in (2.2), further by incorporating the improvement factor in the model. By replacing
7 of (2.2) by przy for £ =0,1,2,---, we obtain

=hk- 1(}6 xz) + h(t = Zk:mwi) - h{zk:(wi - pz'wi)},

1=1 i=1 1=1

(2.5)

k+1

for Zmz <t< sz (2.6)
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By substituting recursively, (2.6) can be rewritten as

4

h(?), for0<t<m.
k i—1 i k
iy = | (e =) ) = h( s = pim)) |+ h{e =3 pim)
pm - =1 j=1 i—1 i=1

k+1

]:
k

for Zm <t§2xi . (2.7)
i=1 i=1

If pp = 0 in (2.7), then the PM does not improve the system at all at the kth
PM and thus if p, = 0 for all &k, then the state of the system is as bad as old
at each PM. This model is referred to as BAO model for later use. In this case,
h’;m(t) = h(t) for Ele z; <t< Zf:ll z; and k = 0,1,2,--- . A typical plot of the
hazard rate under the aperiodic PM model is shown in Figure 2.1. Here, we assume
that pr = p for all k in (2.7).

5 r
0 F
0 r

20 r

Figure 2.1. Hazard rate under the aperiodic PM model
with (a) p=10, (b) p=0.5 and (c) p=1.

3. PARAMETRIC ESTIMATION

The inter-failure times in nonhomogeneous Poisson process(NHPP) are depen-
dent on the total time elapsed from the origin so that NHPP is usually adopted to
model the failures of aging system. When the failures are modeled by NHPP, the
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aging system is assumed to have an increasing intensity function which reflects the
decreasing trend in inter-failure time.

Methods of data analysis under various parametric settings of the intensity func-
tions in NHPP are summarized in Ascher and Feingold(1984). Cox and Lewis(1966),
Brown(1972), and others discuss statistical procedures for time-dependent Poisson
processes.

Let {T; : i =1,2,--- } be a stochastic process of Poisson type with the intensity
function, A(t), which is defined as the rate of occurrence of the events and we may
interpret 7; as the time of occurrence of the ith event. Suppose that the failures are
censored at y* and the number of failures before the censoring time is equal to n.
It is known that the conditional joint probability density function(pdf) of the first
n failure times, given there are n occurrences in time (0, y*] is given by

n![[A )
k=1

[/Oy‘)\(s)ds]n ,

and thus, the unconditional joint pdf of T3, -- , T, is given by

flti,ta ty) = {f[ )\(tk)} exp{— /Oy" /\(s)ds}.
k=1

Thus, the likelihood function can be written as

L= {klj Ate) }exp{-A@") }, (3.1)

f(tlatZ'“ ytn | N(y*) :n) =

where A(t) = f(f A(u)du. If the process is observed until the nth failure instead of
fixing the censoring time, then the likelihood function is obtained by replacing y* of
(3.1) by t,, the nth failure time.

In this section, we estimate the parameters of the intensity function and the
measure of the PM effect for the aperiodic PM model by applying the maximum
likelihood method on the basis of NHPP assumption for the failures within each PM
interval. For our aperiodic PM model, the intensity function is piecewise continuous
and is expressed by

h(t) = hk,(t) foryp <t<ypy1 and k=0,1,2,--,

and the PM times provide mutually disjoint subintervals such as (yo = 0, 11],(y1,v2],
e )(ykn yk-{-l]a Tt

For the purpose of parameter estimation, we consider the case that all the im-
provement factors are equal. That is, p, = p for all k. Thus, the hazard rate under



Hee Soo Kim Joon Keun Yum Dong Ho Park 21

our consideration has the following expression.

o) = 85 (32 20) (1= 3 ) = {30 - o)

=1 i=1
k+1

for Zmz<t<2x,,k 0,1,2,- (3.2)

Replacing yx = Zle z; and substituting recursively, it is easy to show that (3.2) is
reduced to

k
hiym (8) = Z{h(?ﬁ — pyi-1) — by — pyi)} + k(t — pyr), for yp <t < yrp1 (3.3)
1

1=

Next, we let Ni be the number of failures during the interval (yx, yg4+1], £ =0,1,2,- -
and Ty = (T1,Tke, "+ ,Tkn,) denote the failure times in this interval. From (3.1)
we can write the joint pdf of (Ty, Ni) as

fQesthz, - s tkn,) = {H b (tes) }eXP{ Hpy (Ye11) } (34)

where Hp, k fyk +m(8)ds. When the PM interventions are pre-scheduled, they
are not random and thus, the failure time vectors Ty, T2, -+ are independent. For
notational convenience, we take the censoring time y* to be equal to y,+1. Then the
joint pdf of the failure times is simply the product of the joint pdfs given in (3.4)
by property of NHPP. Thus, the likelihood function is represented as

n ng

L= f(to,tx - yt) = [] [ Phm(tes) exp{~ Z (i)} (35)

k=0j=1

To examine and illustrate the parametric approach more explicitly, we consider
a specific model for which the failure time of the system has Weibull distribution.
Let {T; : 1 = 1,2,---} be a stochastic process of Poisson type with the Weibull
intensity function and the PM times provide disjoint subintervals (yo = 0, y1],(y1, ¥2],

“(UnsYn+1], - - . Suppose the failures are censored at yn4+1 and m = 3 p_, g, the
total number of failures during the whole observation period.

The Weibull distribution has the following form of hazard function.

h(t) = 977!

for t > 0, where 8 > 0 and 7y > 0 are scale and shape parameters, respectively. Under
the aperiodic PM model, given in (3.3), the hazard rate is piecewise continuous and
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it is expressed as

k

hgpm () = 407" [Z{(yi —pyi-1)" ! = (3 - pyi)”‘l} +(t - pyk)7"1] ,

i=1
Ye <t<wyry1 (3.6)
Combining (3.5) and (3.6), the log-likelihood function can be written as

In L(8,v,p) =mIny — myIlnd

+ Z Z In [Z{ —pyic1)" 7 = (yi — p:uz')7“1} + (tkj — Pyk)7_l]

k=0 j=1 i=1
— 9 Z [Zv{ —pyic)" = (i — pyi)"’"l}(ykﬂ - Uk)
k=0 Lz=1
+ (Uks1 — pur)" — (yk — Pyk)"’} : (3.7)

To obtain the maximum likelihood estimators(MLE) of 8, v and p , we first find
the estimator of § by solving the equation dln L/06 = 0 . It is easy to obtain

n k
j — [m"l Z{Z'y((yi = i) = (i — o)) (w1 — )
k=0

= 1/
+ (yk+1 — pyk)” — (e — pykf’}] (3.8)

By substituting § of (3.8) for 6 in (3.7), we eliminate 8 from the log likelihood
function. Next, we take the partial derivatives of the log likelihood function of (3.7)
with respect to -y and p to obtain n

dln L(v,p) /0y = m/vy — mgl/g2+zz(93/g4

k=0 j=1

and

dInL(y,p)/8p = —mgs/ga+ (v —1) > _ > (96/94) ,
k=0 j=1

a=y.> [{(y,- — Y1)t = (vi - P’yi)'y_l}(ykﬂ ~ Yk)
+ ’Y{(yi — pyi—1)" U In(y; — pyic1) — (v — pys)" "' In(y; — Pyi)}(yk+1 - yk)]

+ Z{(yk+1 — oY) In(yk+1 — pyx) — (Y — py)” In(yx — pyk)}
k=0



Hee Soo Kim Joon Keun Yum Dong Ho Park 23

n k
g2 = ZZ'Y((% S L Pyi)7—1>(yk+1 )
k=0 i=1
n

+ Z{(yk+1 —pye)” — (yk — pyk)”} ;
k=0
g3 = Z{ — pyi-1)""  In(y; — pyi1) — (i — )"~ In(y; — pys
i— 1 Yi — PYi—1 Yi — PYi n(yz pyz)
+ (trj — pye)" ' In(te; — pyr)

g4 = Z{ —pyi-1) "t = (yi — Pyi)v_l} + (b — o)™,

n k
gs=7(y-1) Z{(yi)(yi — pyi) "% = (yi1) (yi = pyi—1)7‘2}(yk+1 - yk)
k=0 i=1
— Z(yk){(yk+l = pyk)" "t — (yk — pyk)7‘1} ,
and
Z{ v — U = e — pye-1) 2 — (k) (B — k)2

The maximum likelihood estimators, 4 and j, can then be obtained by solving the
equations d1n L(v, p)/0y = 0 and d1n L(y, p)/dp = 0 simultaneously.

4. NUMERICAL EXAMPLES

Applying the aperiodic PM model proposed in Section 2 to the actual data, we
present numerical calculations for the estimation of parameters characterizing the
model. °

4.1 SIMULATION RESULTS

Simulations are carried out to investigate the accuracy of the estimation of pa-
rameters in the model. The failure times are generated for a specific parameter
set and the parameter estimations are performed using the generated failure data.
To generate the failure times, we utilize the thinning method suggested by Lewis
and Shedler(1979). They suggest thinning a given NHPP with a majorizing intensity
function to generate a NHPP with a general intensity function A(¢) in a fixed interval.
The thinning method assumes A\(t) < «(t), where n(t) is a known majorizing inten-
sity function on (0,00). The generation process is as follows. Generate event times
for a NHPP with intensity m(¢) within a fixed interval (0, z). The time z(y should
be finite, no matter how large, so that the expected number of events in the interval
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(0,z0), denoted as E[N(0,zg)], is finite. Denote them as 0 < T} < Ty < ---. Also,
generate Uy, Us, - - -, which are independent uniform U(0, 1) variates. We choose the
T;’s satisfying U;n(T;) < A(T;), which in turn form a subsequence T;,,T;,,---. The
resulting subsequence forms a NHPP with intensity function A(t).

As mentioned in Section 3, the MLEs 6, 4 and p can then be obtained by solving
the equations dInL/0y = 0,3InL/8p = 0 and 01n L /90 = 0 iteratively. To find the
maximum likelihood estimators of the parameters for the model, the log-likelihood
function given in (3.7) should be maximized numerically. For the Weibull hazard
function, the input values of the parameter set is fixed at § = 1,7 = 3,p = 0.8,
Yo =0,y1 =08, y2 =16, y3 =24 ys = 3.1, y5s = 3.8, yg¢ = 44, yr = 5, yg = 5.5,
Y9 = 5.75 and yj9 = 6. Failure times are generated for this parameter set and
estimations are performed on the generated failure data. Simulation is carried out
100 times and the results of MLEs, its standard derivations and CV’s are shown in
Table 4.1. Here, CV denotes the coeflicient variation and is calculated as the ratio
of standard deviation to mean in percentage.

Table 4.1. Simulation results

Varible Mean Std Dev Cv
v 2.899923 0.676695 23.33491
0 0.974864 0.164105 16.83358
P 0.759594 0.167102 21.99891

4.2 REAL DATA ANALYSIS

This subsection presents real data analysis to explain our proposed method. The
failure data set of Table 4.2 consists of 15 failures and 4 maintenance data cited by
Shin, Lim and Lie(1996). They used this data to estimate the parameters of the
failure process and the maintenance effect in Malik’s proportional age’reduction
model. Applying this data, we also estimate the parameters in our aperiodic PM
model. Table 4.2 summarizes the failure and maintenance data collected from the
trouble reports and the operator’s daily record from 1989 to 1994. The system is
observed to be operated for 612 days and 15 failures and 3 major overhauls are
identified. The MLEs of 8 and - for both the proposed model and BAO model are
compared in Table 4.3. The estimated hazard functions, iz(t), in BAO model and
our proposed aperiodic PM model are shown in Figure 4.2.
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Table 4.2. Failure maintenance data of a central cooler system

1.16 3.86 4.92 5.64
1.51 3.87 4.94 5.90
1.54* 3.95 5.01 6.09

2.13 4.07 5.12* 6.121
2.63* 4.63 5.37

Time scale: cumulative running days/100
* Major overhaul
1 Censoring time

Table 4.3. Estimates of parameters for central cooler system in two models

Model 3 9
BAO  (p=0) 212810  1.71437
Proposed (p = 1) 2.89336 1.76757

B -
5 -
4 -
h(t) 3 |
2 -
i — Proposed
‘ —BAO
0 1 1 1 1 1 1
0 1 2 3 4 5 6

Figure 4.2. Estimated hazard functions in two models
(central cooler system).
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