Oxidation of Ascorbic Acid by Crosslinked Poly(4-vinyl pyridine)-Cu(II) Complexes 2. Effect of Crosslinker

가교 폴리(4-비닐피리딘)-구리(II) 착물에 의한 Ascorbic Acid의 산화반응 2. 가교제의 영향

  • 이석기 (경일대학교 공업화학과) ;
  • 서재곤 (경북대학교 고분자공학과) ;
  • 구광모 (경일대학교 공업화학과) ;
  • 전일련 (경일대학교 공업화학과) ;
  • 김우식 (경북대학교 고분자공학과)
  • Published : 2000.03.01

Abstract

Various crosslinked poly(4-vinylpyridines) (CHP4VP) having different degrees of crosslinking were synthesized by radical copolymerization of 4-vinylpyridine with if N,N' -1, 6-hexamethylenebisacrylamide, and CHP4VP- Cu(II) complexes were prepared by the method of adsorption equilibrium. The catalytic activity of the complexes for the oxidation of ascorbic acid (AA) was investigated. The oxidation of AA by these complexes showed a kinetic behavior of the Michaelis-Menten type. The catalytic activity of CHP4VP-Cu(I ) catalytic system was increased with increasing the degree of crosslinking of CHP4VP, and its activity was scarcely decreased even after repeated use. However, the tendency of the catalytic activity of CHP4VP-Cu(II) complexes was decreased for the oxidation of AA when compared with that of the previously reported catalytic system containing crosslinked poly(4-vinylpyridine) prepared using N,N'-methylenebisacrylamide as a crosslinker. These results indicate that the degree of crosslinking of CHP4VP and the hydrophobicity of the crosslinker play an important role in the catalytic system of the oxidation of AA.

4-비닐피리딘과 N,N'-1,6-헥사메틸렌비스아크릴아미드를 라디칼중합하여 여러 가지 가교도를 가지는 가교 폴리(4-비닐피리딘) (CHP4VP)을 합성하였고, 이들 가교고분자와 구리(II)와의 착물을 평형흡착법으로 제조하였다. 제조한 착물들을 ascorbic acid (AA)의 산화반응 촉매로 사용하여 촉매활성을 조사하였다. CHP4VP-Cu(II) 착물에 의한 AA 산화반응은 Michaelis-Menten형 동력학적 거동을 나타내었다. CHP4VP-Cu(II) 촉매계의 촉매활성은 CHP4VP의 가교도가 증가할수록 증가하였고, 또 CHP4VP-Cu(II) 착물은 재사용 후에도 촉매활성이 거의 감소하지 않았다. 그러나 CHP4VP-Cu(II) 착물은 전보의 N,N'-메틸렌비스아크릴아미드가 가교제로 포함된 가교 폴리(4-비닐피리딘)-구리(II) 착물보다 AA 산화반응에 대한 촉매활성이 감소하는 경향을 나타내었다. 이들 결과로 부터 촉매계에 포함된 CHP4VP의 가교도와 가교제의 소수성이 AA 산화반응에 중요한 역할을 함을 알 수 있었다.

Keywords

References

  1. Polymer-Metal Complexes T. Saegusa;H. Hirai;E. Tsuchida
  2. Plenum Press Bioactive Polymeric Systems C. G. Gebelein;C. E. Charraher, Jr.
  3. Functional Monomers and Polymers K. Takemoto;Y. Inaki;R. M. Ottenbrite
  4. React. Polym. v.16 A. Guyot;P. Hodge;D. C. Shemington;H. Widdecke
  5. J. Polym. Sci., Polym. Chem. Ed. v.14 N. H. Agnew
  6. J. Macromol. Sci. Chem. v.A16 C. Carlini;G. Sbrana
  7. J. Polym. Sci., Polym. Chem. Ed. v.31 R. Ran
  8. Bull. Chem. Soc., Japan v.49 H. Niside;J. Deguchi;E. Tsuchida
  9. J. Polym. Sci., Polym. Chem. Ed. v.14 E. Tsuchida;H. Nishikawa;E. Terada
  10. Eur. Polym. J. v.15 Yu. I. Skurlatov;V. Ya. Kovner;S. O. Travin;Yu. E. Kirsh;A. P. Purmal;V. A. Kabanov
  11. Macromol. Chem., Rapid Commun. v.9 K. Yamashita;I. Okada;Y. Susuki;K. Tsuda
  12. Polymer v.34 K. Yamashita;T. Kanamori;M. Nango;K. Tsuda
  13. J. Mol. Catal. v.55 A. Miyagi;S. Nishitama;S. Tsuruya;M. Masai
  14. Inorg. Chim. Acta. v.240 P. M. Henry;X. Ma;G. Noronha;K. Zaw
  15. J. Mol. Catal. v.101 K. Zaw;P. M. Henry
  16. Bull. Chem. Soc., Japan v.55 H. Egawa;T. Nonaka;M. Kozakura
  17. Polymer(Korea) v.22 W. S. Kim;S. K. Lee;K. Y. Nam;K. M. Koo;G. J. Lee;B. K. Park
  18. Macromol. Chem. Phys. v.195 W. S. Kim;S. K. Lee;K. H. Seo
  19. J. Korean Ind. & Eng. Chem. v.8 S. K. Lee;W. S. Kim
  20. J. Am. Chem. Soc. v.56 H. Lineweaver;D. Burk
  21. Polymer v.34 S. K. Lee;K. H. Seo;W. S. Kim
  22. Polymer(Korea) v.21 S. K. Lee;W. S. Kim