PNIPAAM-PMMA Random Copolymer의 합성 및 단량체 반응성비 측정

Synthesis and Monomer Reactivity Ratio of PNIPAAM-PMMA Random Copolymer

  • 이창배 (한양대학교 공과대학 섬유공학과) ;
  • 조창기 (한양대학교 신소재공정공학원)
  • 발행 : 2000.03.01

초록

자유 라디칼 개시제인 2,2'-azobisisobutyronitrile (AIBN)을 사용하여 1,4-dioxane 용매하에서 N-isopropylacrylamide (NIPAAM)와 methyl methacrylate (MMA)를 공중합하였다. 온도에 따른 NIPAAM과 MMA의 반응성비를 알아보기 위해 각각 50, 60, 7$0^{\circ}C$에서 중합하여 전환율이 10 wt%이하가 되도록 반응을 정지시켰다. 단량체 반응성비는 Finemann-Ross법으로 구하였으며, 그 값은 5$0^{\circ}C$에서는 ${\gamma}$$_2$=0.259, ${\gamma}$$_2$=2.782, 6$0^{\circ}C$에서는 ${\gamma}$$_1$=0.271, ${\gamma}$$^2$=0.819, 그리고 7$0^{\circ}C$에서는 ${\gamma}$$_1$=0.286, ${\gamma}$$_2$=2.915로 나타나, 반응온도가 높아질수록 ${\gamma}$$_1$, ${\gamma}$$_2$ 값이 증가함을 알 수 있었다. 또한 반응온도와 반응성비와의 관계로부터 활성화에너지의 차를 구할 수 있었으며, 그 결과 반응성비는 온도 의존성이 있는 것으로 나타났다.

Radical copolymerization of N-isopropylacrylamide (NIPAAM) with methyl methacrylate (MMA) was carried out in 1,4-dioxane using 2,2'-azobisisobutyronitrile (AIBN). To investigate the reactivity ratios of NIPAAM and MMA at different reaction temperatures, the copolymerization was allowed to proceed to low conversion (less than 10 wt%), and the reaction temperatures were 50, 60, and 7$0^{\circ}C$. The monomer reactivity ratios of NIPAAM and MMA were estimated by the graphical methods according to the Finemann-Ross equation. The ${\gamma}$$_1$ and ${\gamma}$$_2$ values for NIPAAM-MMA were 0.259 and 2.782 at 5$0^{\circ}C$, 0.271 and 2.819 at 6$0^{\circ}C$, and 0.286 and 2.915 at 7$0^{\circ}C$, respectively. As the reaction temperature increased, the ${\gamma}$$_1$ and ${\gamma}$$_2$ values increased. The activation energy difference was estimated by comparing the reactivity ratios at different reaction temperatures.

키워드

참고문헌

  1. J. Macromol. Sci., Chem. v.A2 M. Heskins;J. E. Guillet
  2. J. Phy. Chem. v.93 S. Fujishige;K. Kubota;I. Ando
  3. Polymer Engineering and Science v.34 P. S. Mumick;C. L. Mccormick
  4. Macromol. Chem. Phys. v.196 G. Chen;A. S. Hoffman
  5. J. Polymer. Sci. Part A. Polymer Chemistry v.28 H. J. Yang;C. A. Cole;N. Monji
  6. Polym. Prepr.(Am. Chem. Soc., Div. Polym. Chem.) v.27 no.1 J. H. Priest;S. A. Murray;R. J. Nelson
  7. J. Polymer. Sci. v.8 C. K. Chiklis;J. M. Grasshoff
  8. Macromolecules v.24 M. Wilhelm;C. L. Zhao;Y. Wang;R. Xu;M. A. Winnik;J. L. Mura;G. Riess;M. D. Croucher
  9. J. Pharm. Sci. v.79 P. K. Gupta
  10. Macromolecules v.25 M. Malmsten;B. Lindman
  11. J. Controlled Release v.24 K. Kataoka;G. S. Kwon;M. Yokoyama;T. Okano;Y. Sakurai
  12. J. Polym. Sci. v.5 N. Finemann;S. D. Ross
  13. J. Macromol. Sci. Chem. v.A9 T. Kelen;F. Tudos