참고문헌
- L. Steels, 'Building agents out of autonomous behavior systems,' Building Simulated embodied Agents, New Haven: Lowrence Erlbaum, 1993
- L. Meeden, 'An incremental approach to developing intelligent nerual network controllers for robots,' IEEE Transactions on Systems, Man, and Cybernetics,' vol. 26, no. 3, pp. 474-485, 1996 https://doi.org/10.1109/3477.499797
- I. Harvey, P. Husbands, and D. Cliff, 'Issues in evolutionary robotics,' From Animals to Animats 2, J.-A. Meyer, H. Roitblat, and S. Wilson, Eds. Cambridge, MA: MlTPress, 1993, pp. 364-373
- D. Floreano and F. Mondada, 'Evolution of homing navigation in a real mobile robot,' IEEE Transaction on Systems, Man, and Cybernetics,' vol. 26, no. 3, pp. 396-407, 1996 https://doi.org/10.1109/3477.499791
- J. Millan, 'Rapid, safe, and incremental learning of navigation stragegies,' IEEE Transaction on Systems, Man, and Cybernetics,' vol. 26, no. 3, pp. 408-420, 1996 https://doi.org/10.1109/3477.499792
- R. K. Belew, J. McInerney, and N. N. Schraudolph, 'Evolving networks : Using the genetic algorithm with connectionist learning,' Artificial Life II, edited by C. G. Langton, J. D. Farmer, S. Rasmussen, and C. E. Taylor, pp. 511-548, Addison-Wesley, 1991
- G. F. Miller, P. M. Todd, and S. U. Hedge, 'Designing neural networks using genetic algorithms,' Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann, 1989
- J. B. Lamarck, 'Of the influence of the environment on the activities and habits of animals,' it Zoological Philosophy, Macmillan, London, 1914
- D. H. Ackley, and M. L. Littman, 'A case for Lamarckian evolution,' Artificial Life III, edited by C. G. Langton, pp. 3-10, Addison-Wesley, 1994
- J. M. Baldwin, 'A new factor in evolution,' The American Naturalist, vol 30, June, 1896
- G. E. Hinton and S. J. Nowlan, 'How learning can guide evolution,' Adaptive Individuals in Evolving Populations : Models and Algorithms, edited by R. K. Belew and M. Mitchell, pp. 447-454, Addison Wesley, 1996
- D. Parisi, S. Nolfi, 'The influence of learning on evolution,' Adaptive Individuals in Evolving Populations : Models and Algorithms, edited by R. K. Belew and M. Mitchell, pp. 419-430, Addison Wesley, 1996
- D. H. Ackley, and M. L. Littman, 'Generalization and scaling in reinforcement learning,' in Advances in Neural Information Processing System 2, D. S. Touretsky, Ed. San Mateo, CA: Morgan Kaufmann, 1990. pp. 550-557
- R. Williams, and David Zipser, 'A learning algorithm for continually running fully recurrent neural networks,' Neural Computation, vol. 1, pp. 270-280, 1989
- J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press, 1975
- David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley Press, 1989
- A. H. Wright, 'Genetic algorithms for real parameter optimization,' Foundations of Genetic Algorithms, edited by G. Rawlins, pp. 205-220, Morgan Kaufmann Publishers, 1991
- Daijin Kim and Chulhyun Kim, 'Forecasting Time Series with Genetic Fuzzy Predictor Ensemble', IEEE Trans. on Fuzzy Systems, vol. 5, no. 4, 1997 https://doi.org/10.1109/91.649903
- Daijin Kim, Sunha Ahn and Dae-Seong Kang, 'Co-adaptation of Self-Organizing Maps by Evolution and Learning,' NeuroComputing, vol. 30, pp. 249-272, 2000 https://doi.org/10.1016/S0925-2312(99)00129-0
- F. Mondada, E. Pranzi, and P. Ienne, 'Mobil robot miniaturization: A tool for investigation in control algorithms,' Proceedings of the Thrid International Symopsium on Experimental Robotics, Kyoto, Japan, 1993
- O. Michel, 'Khepera Simulator v2.0', User's Manual, University of Nice, 1996
- F. Mondada, and D. Floreano, 'Evolution of neural control structures: some experiments on mobile robots,' Robotics and Autonomous Systems, vol 16, pp. 183-195, 1995 https://doi.org/10.1016/0921-8890(96)81008-6