A New Algorithm for Deriving Topological Relationships in Spatial Databases

공간 데이터베이스를 위한 새로운 위상 관계 유도 알고리즘

  • 황환규 (강원대학교 정보통신공학과)
  • Published : 2000.03.01

Abstract

Topological relationships play an important role in query optimization in spatial databases. If topological relationships are known a priori, then expensive query processing can be avoided. In this paper we address the problems of: ⅰ) identifying topological relationships among spatial objects, ⅱ) checking consistency of specified topological relationships, and ⅲ) exhaustively deriving new topological relationships from the ones specified. These activities lead to an efficient query processing when queries associated with topological relationships are invoked. Specifically, eight types of topological relationships ({equal, disjoint, overlap, meets, contains, contained-in, properly-contains, and properly-contained-in}) are considered. We present an algorithm to check the consistency of specified topological relationships and to derive all possible relationships from the given set of known relationships.

위상 관계는 공간 데이터베이스의 질의 최적화에 중요한 역할을 한다. 만일 위상 관계를 사전에 알 수 있다면 비용이 많이 드는 질의 처리는 피할 수 있다. 본 논문에서는 1) 공간 객체간의 위상 관계의 파악, 2) 주어진 위상 관계의 일관성 검사, 3) 주어진 위상 관계로부터 새로운 위상 관계의 유도 등의 문제에 관하여 논의하고자 한다. 이러한 논의는 위상 관계와 관련된 질의가 주어졌을 때 효과적인 공간 질의 처리를 가능하게 하여준다. 특히 위상 관계로서 8가지 종류({equal, disjoint, overlap, meets, contains, contained-in, properly-contains, properly-contained-in})를 고려한다. 본 논문에서는 주어진 위상 관계의 일관성을 검증하는 알고리즘을 제시하고 주어진 위상 관계로부터 모든 가능한 새로운 위상 관계를 유도하는 알고리즘을 제시한다.

Keywords

References

  1. Beckman, N., H-P Kriegel, R. Schneider, and B. Seeger, 'The R* - Trees: An Efficient and Robust Access Method for Points and Rectangles' in proc. ACM SIGMOD Intl. Conf. on Management of Data, pp.322-331, Atlantic City, New Jersey, May 1990
  2. Bentley,J. 'Multidimensional Binary Search Trees Used for Associative Searching.' Comm. of ACM, Vol. 18, No.9, 1975 https://doi.org/10.1145/361002.361007
  3. Brinkhoff, T., H-P Kriegel, and B. Seeger, 'Efficient Processing of Spatial Joins Using R-Trees,' in Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp. 237-246, May 1993 https://doi.org/10.1145/170036.170075
  4. Clementini, E., Di Felice, P., and van Oosterom, P., 'A Small Set of Formal Topological Relationships Suitable for End-User Interaction,' in Proc. of the Third Symposium on Large Spatial Databases, SSD'93, D. Abel and B.C. Ooi, Eds., pp. 277-295, Singapore, June 1993
  5. Egenhofer, M., 'A Formal Definition of Binary Topological Relationships,' in Proc. of the Second Symposium on Large Spatial Databases, SSD'91, O. Gunther and H.J. Schek, Eds., pp.143-160, Zurich, Switzerland, August 1991
  6. Gunther, O., and A. Buchmann, 'Research Issues In Spatial Databases,' ACM SIGMOD Record, Vol. 19, No.4, pp. 61-68, 1990 https://doi.org/10.1145/122058.122065
  7. Gunther, O., 'Efficient Computation of Spatial Joins,' in Proc. of 9th IEEE Intl. Conf. on Data Engineering, pp. 47-57, Vienna, Austria, 1993
  8. Guting, R. H., 'An Introduction to Spatial Database Systems,' The VLDB Journal, Vol. 3, No.4, pp. 357-400, October 1994 https://doi.org/10.1007/BF01231602
  9. Guttman, A., 'R-Trees: A Dynamic Index Structure for Spatial Searching,' in Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp.47-57, Boston, Mass., June 1984
  10. Lo, M.-L., and C. V. Ravishankar, 'Spatial Joins Using Seeded Trees,' in Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp.209-220, Minneapolis, Minnesota, May 1994 https://doi.org/10.1145/191839.191881
  11. Nievergelt, J., H. Hinterberger, and K. Sevcik., 'The Grid File: An Adaptable, Symmetric Multikey File Structure,' ACM Trans. on Database Systems, Vol. 9, No. 1., March 1984 https://doi.org/10.1145/348.318586
  12. Papadias, D., and T. Sellis, 'Qualitative Representation of Spatial Knowledge In Two-Dimensional Space,' The VLDB Journal, Vol. 3, No.4, pp. 479-516. October 1994 https://doi.org/10.1007/BF01231605
  13. Papadias, D., Y. Theodoridis, T. Sellis, and M.J. Egenhofer, 'Topological Relations In the World of Minimum Bounding Rectangles: A Study with R-trees,' in Proc. ACM SIGMOD IntI. Conf. on Management of Data, pp.92-103, San Jose, California, May 1995 https://doi.org/10.1145/568271.223798
  14. Robinson,J., 'The K-D-B Tree: A Search Structure for Large Multidimensional Dynamic Indexes,' in Proc. ACM SIGMOD IntI. Conf on Management of Data, Ann Arbor, Michigan, April 1981
  15. Samet, H., 'The Quadtree and Related Hierarchical Data Structures,' ACM Computing Surveys, Vol. 16, No.2, June 1984 https://doi.org/10.1145/356924.356930
  16. Samet, H., The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990
  17. SeIlis, T., Roussopoulos, and C. Faloutsos, 'The R+-Tree: A Dynamic Index for Multi-Dimensional Objects,' in Proc. IntI. Conf. on Very Large Data Bases, pp, 507-518, Brighton, England, 1987
  18. Sistla, A. P., Y. Clement, and R. Haddad, 'Reasoning about Spatial Relationships in Picture Retrieval Systems,' in Proc. Intl. Conf. on Very Large Data Bases, pp, 570-581, Santiago, Chile, 1994
  19. Whang, K. Y. and Krishnamurthy, R., 'The Multilevel Grid File-A Dynamic Hierarchical Multidimensional File Structure,' In Proc. 2nd Intl. Conf. on Database Systems for Advanced Applications, pp. 449-459, Apr. 1991