Persistence length calculation from light scattering and intrinsic viscosity of dilute semiflexible polyimide solutions with different degree of imidization

  • Hansol Cho (Polymer Laboratory, Chemical Sector, Samsung Advanced Institute of Technology) ;
  • Kim, Youn-Cheol (Department of Industrial Chemistry, Chonan National Technology College) ;
  • Kim, Sang-Ouk (Applied Rhelolgy Laboratory, Department of Chemical Engineering, Korea Advanced Institute of Science Technology(KAIST)) ;
  • Chung, In-Jae (Applied Rhelolgy Laboratory, Department of Chemical Engineering, Korea Advanced Institute of Science Technology(KAIST))
  • Published : 2000.03.01

Abstract

We have derived the translation diffusion coefficient and the intrinsic viscosity formula adopting the Kholodenko's theory using 3+1 dimensional Dirac propagator in the Kirkwood and Riseman scheme. We also performed static light scattering experiments and intrinsic viscosity measurement of dilute solutions of polyimides with different rigidities. In the framework of Kholodenko's theory, we can easily measure the persistence length of polyimide. We prepared five different polyamic acids and polyimides with different degree of imidization by controlling imidization temperatures. From experimental results, we obtained molecular weights and persistence lengths according to the Kholodenko's plot. The molecular weight and the intrinsic viscosity decreased and then increased with the imidization temperature but the persistence length increased monotonically and then leveled off. The persistence lengths calculated from intrinsic viscosities showed very good agreement with those from light scattering experiments.

Keywords

References

  1. J. Chem. Phys. v.23 Auer, P.L.;C.S. Gardner
  2. J. Chem. Phys. v.23 Auer, P.L.;C.S. Gardner
  3. Polyimides,Thermally Stable Polymers Bessonov, M.I.;M.M. Koton;V.V. Kudryavtsev;L.A. Laius
  4. Macromol. Theory Simul. v.8 Cho, H.;I.J. Chung
  5. Laser Light Scattering Chu, B.
  6. J. Colloid. Sci. v.15 Coumou, D.J.
  7. Liquid Crystallinity in Polymers Bresford, G.;W. Krigbaum;A. Ciferi(ed.)
  8. The Theory of Polymer Dynamics Doi, M.;S.F. Edwards
  9. Vysokomol Soedin. v.A28 Dyakonova, N.V.;N.V. Mikhailova;V.P. Sklizkova;I. A. Baranovskaya;Yu.G. Baklagina; V.V. Kudryavtsev;A.V. Sidorovich;V.E. Eskin;M.M. Koton
  10. Vysokomol Soedin. v.A10 Eskin, V.E.;I.A.Baranovska
  11. J. Chem. Phys. v.44 Harris, R.A.;J.E. Hearst
  12. J. Chem. Phys. v.46 Hearst, J.E.;R.A. Harris
  13. Macromol. Theory Simul. v.4 He, C.;A.H. Windle
  14. Macromolecules v.30 Hickl, P.;M. Ballauff;U. Scherf;K. Mullen;P. Lindner
  15. Ann. Phys. v.202 Kholodenko, A.L.
  16. J. Chem. Phys. v.96 Kholodenko, A.L.
  17. Macromolecules v.26 Kholodenko, A.L.
  18. Physica A v.260 Kholodenko, A.L.;M. Ballauff;M.A. Granados
  19. Recl. Trav. Chim. 1949, Pays-Bas v.68 Kratky, O.;G. Porod
  20. J. Polym. Sci., Polym. Phys. Ed. v.19 Krigbaum, W. R.;S. Sasaki
  21. Macromolecules v.21 Krigbaum, W. R.;G. Brelsford
  22. Phys. Rev. E v.55 Kroy, K.;E. Frey
  23. Polyamic Acids and Polyimides: Synthesis, Tranformations, and Structures Macromolecules of polyamic acids and polyimides in Magarik, S. Ya.;M.I. Bessonov(ed.);V.A. Zubkov(ed.)
  24. J. Chem. Phys. v.83 Perico, A.;M. Guenza
  25. J. Chem. Phys. v.84 Perico, A.;M. Guenza
  26. J. Chem. Phys. v.85 Shimada, J.;H. Yamakawa
  27. J. Chem. Phys. v.39 Tschoegl, N.W.
  28. J. Chem. Phys. v.101 Winkler, R.G.;P. Reineker;L. Harnau
  29. Macromol. Theory Simul. v.6 Winkler, R.G.;L. Harnau;P. Reineker
  30. Modern Theory of Polymer Solutions Yamakawa, H.
  31. Macromolecules v.7 Yamakawa, H.;M. Fujii
  32. J. Chem. Phys. v.83 Yamakawa, H.;J. Shimada
  33. Polyimides Characterization of Polyimides Young, P.R.;R. Escott;D. Wilson(ed.);H.D. Stenzenberger(ed.);P.M. Hergenrother(ed.)