Temperature and stress dependence of prism plane slip dislocation velocity in sapphire ($\alpha$-Al$_2$O$_3$) single crystals

사파이어($\alpha$-Al$_2$O$_3$) 단결성에 있어 prism plane slip 전위속도의 온도 및 응력의존성

  • 윤석영 (부산대학교 공과대학 무기재료공학과) ;
  • 이종영 ((주) 엠에스존)
  • Published : 2000.08.01

Abstract

Prism plane slip {11$\bar{2}$0}1/3{$\bar{1}$120} location velocity in sapphire ($\alpha$-Al$_2$O$_3$) single crystals was measured by etch-pit method. The dislocation velocities were measured as a function of temperature and stress between $1150^{\circ}C$ and $1400^{\circ}C$ for engineering stresses in the range 140 to 250 MPa. The dependence of temperature and stress in dislocation velocity was investigated. The activation energy for dislocation velocity was determined to be 4.2$\pm$0.4 eV. On the other hand, the stress exponent (m) describing the stress dependence of dislocation velocities was in the range of 4.5$\pm$0.8. Through this experiments, it was reconfirmed that the basal plane in sapphire single crystals has the 3-fold symmetry.

사파이어 ($\alpha$-Al$_2$O$_3$) 단결정에 있어 prism plane slip {11$\bar{2}$0}1/3{$\bar{1}$120} 전위속도를 에치-피트 방법으로 측정하였다. 전위속도 측정시 온도범위는 $1150^{\circ}C$에서 $1400^{\circ}C$까지 였으며, 응력범위는 140 MPa에서 250 MPa까지였다. 얻어진 전위속도의 온도 및 응력 의존성에 대해 검토하였다. 전위속도의 온도의존성을 이용하여 prism plane slip 전위속도를 위한 활성화에너지를 구하였으며, 그 값은 대략 4.2$\pm$0.4 eV이었다. 또한, 전위속도의 응력의존성을 나타내는 응력지수 m은 4.5$\pm$0.8이었다. 한편, 전위속도 측정을 통해 사파이어 단결정에서 basal 면이 3-fold 대칭을 가진다는 사실을 재확인하였다.

Keywords

References

  1. Acta Metall v.5 no.9 M.L. Kronberg
  2. Materials Science and Technology v.1 T.E. Mitchell;K.P.D. Lagerl\"{o}f;A.H. Heuer
  3. Acta Metall v.55 no.2 D.J. Gooch;G.W. Groves
  4. J. Am. Ceram. Soc v.40 J.B. Wachtman;L.H. Maxwell
  5. ibid v.43 no.9 R. Scheupein;P. Gibbs
  6. J. Am. Ceram. Soc v.56 no.3 J.D. Snow;A.H. Heuer
  7. Acta Metall v.30 J. Cadoz;J. Castaing;D.S. Phillips;A.H. Heuer
  8. J. Am. Ceram. Soc v.57 no.9 B.J. Pletka;T.E. Mitchell;A.H. Heuer
  9. Acta Metall v.25 B.J. Pletk;A.H. heuer;T.E. Mitchell
  10. Acta Metall v.30 B.J. Plecka;T.E. Mitchell;A.H. Heuer
  11. J. Appl. phys v.31 no.3 R. Chang
  12. Deformation of Ceramics Materials B.J. Hockey;R.C. Bradt;R.E. Tressler
  13. J. Am. Ceram. Soc v.71 no.1 H.M. Chan;B.R. Lawn
  14. J. Mater. Sci v.23 W. Kollenberg
  15. Zeeitschr. fur Metallkunde v.26 B. Ya Farber;S.Y. Yoon;K.P.D. Lagerl\"{o}f;A.H. Heuer
  16. Phys. Stat. Sol v.a no.137 B. Ya. Farber;S.Y. Yoon;K.P.D. Lagerl\"{o}f;A.H. Heuer
  17. J. Appl. Phys. v.30 W.G. Johnston;J.J. Gilman
  18. Dislocations dynamics and mechanical properties of crystals v.30 E. Nadgornyi;J.W. Christian;P.Haasen;T.B. Massalski
  19. Phil. Mag A v.70 B. Ya. Farber;A.S. Chiarelli;A.H. Heuer
  20. J. Am. Ceram Soc v.77 no.2 Hyung-Sun Kim;Steve Roberts
  21. Inorganic Materials v.27 no.10 Disolation Mobility in Corundum Single Crystal During High-Temperature Identation I.V. Gridneva;E.R. Dobrovinskaya;D.V. Lotsko;Yu V. Mil'man;V.V.Pishchik;N.D. Rudyk
  22. Theory of Elasticity (3rd ed.) S. Timoshenko
  23. Phys. Stat. Sol v.19 V.B. Pariiskii
  24. J. Electron. Micro. Tech v.2 W.E. Lee;K.P.D. Lagerl\"{o}f
  25. J. Am. Ceram. Soc v.48 no.4 H. Conrad
  26. Theory of Dislocations (2nd ed.) J.P. Hirth;J. Lothe