Thermal dissociation of excitons bound to neutral acceptors in CdTe single crystal

CdTe 단결정에서 중성 받게에 구속된 엑시톤의 열 해리

  • 박효열 (울산과학대학 반도체 응용과)
  • Published : 2000.06.01

Abstract

The dissociation of excitons bounds to neutral accepter in CdTe single crystal was investigated by measurement of temperature dependence of the photoluminescence spectra. The binding energies of CdTe single crystal were determined by PL spectrum at 12K. The free exciton (X) binding energy, the exciton binding energy on neutral donor ($D^{\circ}$, X), and the exciton binding energy on neutral acceptor ($A^{\circ}$, X) were 10 meV, 3.49 meV, and 7.17 meV respectively. From the value of activation energy of ($A^{\circ}$, X), we could show that the dissociation of ($A^{\circ}$, X) is attributed to free exciton.

CdTe 단결정에서 중성 받게에 구속된 엑시톤 해리를 PL 스펙트럼의 온도의존성을 측정하여 조사하였다. 12 K에서 CdTe 단결정의 자유 엑시톤의 결합 에너지는 10 meV이고,중성받게에 구속된 결합 에너지는 7.17 meV 이며, 또 중성주게에 구속된 결합 에너지는 14 meV이였다. 또한 ($A^{\circ}$, X)의 활성화 에너지의 값으로부터($A^{\circ}$, X)의 해리는 자유 엑시톤에서 해리됨을 알 수 있었다.

Keywords

References

  1. J. Cryst. Growth. v.197 A.Zumbihl;M.Hage-Ali;P.Fougeres;J.M.Koebel;R.Regal;P.Shifient
  2. IEEE TRANSACTIONS ON NUCLEAR SCIENCE v.45 V.I.Ivano;L.A.Aleksejava;M.A.Gagliardi;T.Gagliardi;S.Nenonen
  3. J. Vac. Sci. Technol. v.A3 S.L.Bell;S.Sen
  4. Semiconductors and Semimetals v.5 R.K.Willardsons;A.C.Beer
  5. JPN, J. Appl. Phys. v.37 Tamotsu Okamota;Yuichi Matsuzaki;Noeshad Amin;Akira Yamada;Konagal
  6. J. Appl. Phys. v.43 L.L.Kazmerski;W.B.Berry;C.W.Allen
  7. Soviet Phys. Cryst. v.24 V.N.Martynov;S.A.Medvedev;Z,P.Shogenov;M.B.Slavin
  8. Solid State Commun. v.110 Sh. U. Yuldashev;Y.B.Hou;J.H.Leem;H.C.Jeon;T.W.Kang
  9. Appl. Phys. Lett. v.75 D.Grecu;A.D.Compaan
  10. Appl. Phys. Lett. v.47 J.Gonzalez-Hernandez;G.H.Azarbayejani;R.Tsu;F.H.Pollak
  11. Solid State Commun. v.39 H.Richter;Z.P.Wang;L.Ley
  12. Mater. Res. Soc. Symp. Proc. v.31 Electron Microscopy of Materials W.Krakow;D.A.Smith;L.W.Hobbs
  13. Springer Series in Optical Sciences v.43 X-Ray Microscopy G.Schmahl;D.Rudolph
  14. Materals Aspercts of GaAs and InP Based structures V.Swaminathan;A.T.Macrander
  15. J. Electrochem. Soc. v.120 R.Triboulet;Y.Marfaing
  16. J. Vac. Sci. Technol. v.A7 J.M.Wrobel;J.J.Dubowski;P.Becla
  17. Appl. Phys. Lett. v.55 K.Lischka;T.Schmidt;A.Pesek;Sitter
  18. Phys. Rev. v.B28 E.Cohen;R.A.Street;P.Muranevich
  19. Phys. Stat. Sol (b) v.67 P.Hiesilger;S.Suga;F.Willmann;W.Dreybrodt
  20. J. Vac. Sci. Technol. v.A3 N.C.Giles-Taylor;R.N.Bicknell;D.K.Blanks;T.H.Mayersand;J.F.Schetzina
  21. J. Appl. Phys. v.66 F. Dal, Bo;G.Lentz;N.Magnea;H.Mariette;Le Si Dang;J.P.Pautrat
  22. Phys. Rev. v.B30 E.Molva;J.L.Pautrat;K.Saminadayar;G.Milchberg;N.Magnea
  23. Phys. Stat. Sol. (b) v.68 T.Taguchi;J.Shirafuji;Y.Inuishi
  24. Phys. Rev. v.B4 D.Bimberg;M.Sonfergeld