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Development of Continuous/Discrete Mixed Hy/Hw
Filtering Design Algorithms for Time Delay Systems

Jong Hae Kim

Abstract: The problems of mixed Ho/Ho filtering design for continuous and discrete time linear systems with time delay are
investigated. The main purpose is to design a stable mixed Hy/Ho filter which minimizes the H, performance measure satisfying
a prescribed Ha. norm bound on the closed loop system in continuous-time case and discrete-time case, respectively. The sufficient
conditions of existence of filter, the mixed Ho»/Ho filter design method, and the upper bound of performance measure are proposed
by LMI(linear matrix inequality) techniques in terms of all finding variables. Also, we present optimization problems in order
to get the optimal mixed H»/Ho filter in continuous and discrete time case, respectively.
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L. Introduction

During the last decades, the extensive use of optimization
criteria like the H> and/or H» norm has consolidated the
importance of estimation and filtering in linear systems
theory. The theory of filtering has long been one of the
cornerstones of modern system theory. Also, it is well
known that for white noise inputs the maximal output
variance leads to the H, criterion, while energy bounded
signals corrupting the system appears to be more tractable
in Ho setting. In the H, filtering approach, the noise
characteristics are known leading to the minimization of the
H> norm of the transfer function from the processes noise
to the estimation error[1][2]. Recently, the Hw filtering
approach has been developed from the loose assumption of
boundedness of the noise variance. In this case, the
performance index to be minimized being the worst case He
norm from the process noise to the estimation error[3}{4].
Recently, Geromel et al[5][6] presented robust filtering
design methods in H> space and He space, respectively. In
order to get the robust performance, the filtering design
problem dealing with both H; and Heo norm measures is
necessary. Palhares et al.[7] proposed the problem of mixed
L>-Lo/He performance filtering design for uncertain linear
systems. Generally speaking, the mixed H»/He filtering
design can be described as the problem of minimizing an
upper bound to the energy-to-peak gain while a prescribed
y noise attenuation level is imposed to the He norm of the
filtering error system, considering two different channels.
Also, Palhares et al.[8] considered robust He filter design
algorithm with pole constraints for discrete time systems.
Wang et al.[9] dealt with the problem of robust H»/Hs state
estimation for discrete time systems with error variance
constraints. However, most of filtering papers did not
consider time delay. More recently, there are many papers
considering time delay systems in control part[10][11]{12]
because the time delay is frequently a source of instability
and encountered in various engineering systems. However,
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there are no papers considering mixed H»/Hw filtering
design methods of time delay systems. Also, the existing
works without considering time delay were much
conservative because they did not give optimization methods
to get an optimal filter which minimized the H> performance
measure satisfying prescribed Ho norm bound of the closed
loop system. Therefore, our aim is to present design
methods in order to get an optimal mixed Hy/He filter in
continuous and discrete time systems with time delay.

In this paper, we consider the mixed HyHe filtering
design algorithms of linear time delay systems using LMI
technique. Also, we present the continuous/discrete
optimization problems. Since our proposed sufficient
conditions are LMIs, all solutions can be obtained at the
same time. Also, a numerical example is provided to
demonstrate theoretical results. Here, the notation is fairly
standard. &x(¢) indicates x(#) for continuous time systems
and «x(t+1) for discrete time systems. The symbol x
represents the elements below the main diagonal of a
symmetric block matrix. #{ -) denotes the trace of the
matrix (- ).

II. Mixed H./H. filtering design
Consider a linear time delay system

&x(t) = Ax(t)+Ax(t—d)+ Bu(t)
wW() = Cx(D+ Du(t) 0]
x(8) = (), —d<t=<0

where x(f)eR” is the state vector, y(f)eR’ is the
measurement output vector, w(t)eR, is the noise signal
vector, ¢,(¢) is an initial value function, and all matrices

have proper dimensions. Time delay d is positive real
number in continuous-time case and positive integer number
in discrete-time case. And we assume that the system (1) is
asymptotically stable. This assumption guarantees that the
boundedness of the filtering error holds, since the
asymptotic stability of the filtering error dynamics depends
on the states of the system (1). Our aim is to design a stable
linear mixed H/He filter described by

8x(#) = Ax(t)+ Agx(t—d)+ Ku(t) 2
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where, A and K are filter variables. If we take the error
state vector as follows:

e(t)=x(t)— (1), 3)

then the error dynamics is obtained

de(t) = Ae(t)+(A—KC— A)x(t)
+Agze(t—d)+(B— KD)w(t) )
Zl(t) = Lle( t)
2y(¢) = Lae(t)
by defining the error state output as
z{t)=L;e(t), i=1,2. Define the following augmented
state vector

2 ()= ;‘Eg )

such that the filtering error dynamics is given by

&xf(t) = A/x/(t)+Ad/x,(t—d)+wa(t)
Zl(t) = clfxf(t) (6)
2(t) = Coyxs(t) (
= = [#()] _
x(8) = ¢t) = ¢;(t) s d<it<0

where some notations are denoted by

_ A 0 _[A; O
A=l a-ke-a al 4= 4 ™
Df:[B—BKD]' Cl/=[0 L1], sz=[0 L,].

Associated with mixed HHo filter, we introduce the
following filtering design objective:

For a given 7, determine filter variables A and K that
achieve minimization of H; performance measure under
satisfying Ho norm bound within predetermined y.

®

Also, we introduce H, performance measures

fowzl(t)Tzl(t)dt
L= ®

PIOLAN)

and He performance measures

[Ta(8) T2 ) — Pl ) Tl D))t
=17 (10)

31022 (5)T2(£) = Pl ) Tl 0]

in continuous time case and discrete time case, respectively.
Therefore, our aim is to develop the mixed Hy/H filtering
design method satisfying the objective (8). In the following,
we present LMI optimization problems to get the optimal
mixed H/Ho filter satisfying (8) by LMI technique in
continuous time (Theorem 1) and discrete time (Theorem 2),
respectively.

Theorem 1: (Continuous time case) For a given positive
constant 1y, if the following optimization problem

min {e+ #{Q)} subject to

ATP+PA+S, ATP,— CTMT - MT+ S,

) * M{+M+L{Li+5;
* *
* *
PA; 0
0 PA,
s, Zsco.
* =S

ATP+PA+S, ATP,— CTMI—MT+ S,

* M{+M+L;L,+S;
i) * *
S %
LS %
PA, 0 P,B
0 PzAd PzB—‘MzD
-5 =S 0 <0,
X =8 0
* ok —AI
i) —a+$,(0) TP11(0) + $5(0) TPa2(0)<0, an

) — Q+ NTS|N; + Ni SoN, + NI SoNy+ NIS3N,<0

has a solution positive definite matrices(or scalar) P,, P,,
Si, Sy Sy, @, @, and matrices M,, M,, then (2) is a

continuous time mixed Hy/Hw filter and J*=a+tAQ) is
an upper bound of continuous time H, performance
measure. Here, some notations are defined as

Mlzpzﬁ
M= PK (12)

0
[ #1280 de=NNT=[ ][ NT NT].
- 2
Proof: If we define a Lyapunov functional
t
Ve () =2/ Px() + [ x/r) Sxe)dr,  (13)

then the derivative of (13) is given

Vx (1)) =%,8) TPx(¢) + x,(¢) TPx () (14)
+x/(1)TSxp(t) —x,(t—d) "Sx (t—d).

The linear matrix inequality (i) in (11) implies that

V(xs(£))<—21(¢) T2 (£)<0. (15)

Therefore we have

x(t)
x/(t—d) (16)
X[A}‘P+PAf+C1/C1/+S PAdf] xf(t)
[x/(t d)]

when assuming the zero noise signal vector input. And if
we set

[0 Pz] 5= [52 53]’ a7
then the following inequality

[A,TP+ PA ,): CliCy+ S PAé,,] <0 (18)

is changed to
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AP +PA+S, ATP,—CTK™P,— A" P,+ S,

* ATP,+ P,A+LTL+S;
* *
* * (19)
PA; 0
0 PAy
s, |«
* =Sy

Using some changes of variables, M,=P, A and
M,=P,K, the (19) is transformed into (i) of (11).
Similarly to the procedure of proof (i) in (11), the proof of
(i) is completed using the Lyapunov functional (13) and
continuous-time Ho performance measure (10). The linear
matrix inequality (ii) in (11) implies that

V(s ())<= 25(8) T25(£) + (&) Tu( £)<0. (20)

Therefore we have

x(8)
xf(t—d)
w(t)
AJP+ PA+ Ci;Cy+S PAy PDf ][ x4¢)
X * -S 0 x/(t—d)}<0.
* * =20 w(e)

Q@1

Also, using the Schur complements and some changes of
variables, the following matrix inequality

AJP+ PAs+ CLCyyt+ S PAy PD;
% -S 0

<0 (22)
* * =90

is changed to (ii) in (11). Furthermore, by the integrating
both sides of the inequality (15) from 0 to 7' and using

the initial condition, we obtain

Ty
_j; zl(t)TZI(t)dt> xf(Tf)TPx/(Tf)_x/(O)TPx/(O)
+f:,dxf(f)TSxf(r)dz'— f_odx,(z-)TSx,(z-)dr_
(23)

As the closed loop system is asymptotically stable, when
T;—c0 some terms go to zero. Hence we get

0 0

| o adt < 6,0) P 0) + [ 6,(2)7Sp,(2)ar.
(29

This is an upper bound of H, performance measure. The

first term of right hand side in (24) is changed to

—a+ ¢ 0)TPp,(0)<0. This is equivalent to (iii) in (11).

The second term of the right hand side in (24) has the

following relations

0
. A Sp2)dr= jfdtrw,(r)Tqu,(r))dr @5)
= tr{NN'S) = t{ N'SN)< 1/ Q).
Therefore, — Q+ NTSN<( ié equal to (iv) in (11).
Hence, we can get the optimal continuous-time mixed Hy/Heo
filter satisfying the filtering design objective (8). Also, all
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solutions including filter variables( A= P;'M;, K= P;'M;)
and the upper bound of H, performance measure
(J*=a+ t{(Q)) can be calculated simultaneously because
the proposed sufficient conditions are LMIs in terms of all
finding variables.

Theorem 2: (Discrete time case) For a given positive
constant 1y, if the following optimization problem

min {a+ t/{Q)} subject to

_P1 0 PlA
* -Pg PzA_Mzc_Ml
* ok *
* X *
* * *
0 PA; O
M, 0 PA,
—PASH+HLTL, 0 0 ’
* -8 =S
* X =S
_Pl 0 PIA
* _Pz PzA"‘MzC—Ml
* >k '_‘P1+ Sl
i | ok k *
X * *
* X *
X X *
0 PA; 0 P.B
Ml 0 PzAd PgB“‘MzD
Sy 0 0 0
~ Pyt S+ LTL, 0 0 0 <0,
* _Sl _Sz 0
X X =5 0
* X ok — I

i) ~a+$1(0)P1$1(0) +65(0) "P22(0)<0,
) — Q+ N{SIN; + Ny SN, + N{SoN, + Nj S3No< 0
(26)
has a solution positive definite matrices(or scalar) P, P,,
S, Ss S3, @, @, and matrices M;, M, then (2)is a
discrete time mixed Ho/Ho filter and J* = o+ #(Q) is an

upper bound of discrete time H: performance measure.
Here, some notations are defined as

MIZPZA
M2:P2K (27)
2 # 0T = =] MLV M),

Proof: Similarly to the continuous time case, define a
Lyapunov functional as follows:

VA D) =) Pat)+ 33 x ) 7S i), (28)

= f—

The difference of the (28) is given

4V = V(xt+1))— V(x(8)
= x/(t+1) TPx;(t+ 1) —x,(t) TPx,(t) 29
+xf(t)TSxf(t)—x/(t—d)TSx/(t-d)

The linear matrix inequality (i) in (26) implies that
AV<—2,(¢) "21(£)<0. (30)
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Therefore we have

[ x/2) 1TTAJPA;— P+S+CLlC, AJPAy
x/(t_d) * —S+A3}PAdf
x,(8)
X[x,(t—d)]<0’
(31

when assuming the zero noise signal vector input. And if
we set

[P O =[S S, 32
P=[0 2] S=[3 &) (32)

then the following inequality

AJPA;— P+S+C;Cyy AJPAy ] O (33)
* — S+ ALPA
is changed to
-P 0 PA
* —P, P,A— P,KC—P,A
* X — P+ S,
* ok *
* ok *
* %k * (34)
0 PA; 0
P,A 0 PAy;
— P+ S;+LTL, 0 0 '
* - Sl - SZ
* k=8,
Using some changes of variables, M= P, A4,

M,= P, K, (34) is transformed into (i) of (26). Similarly to
the procedure of proof (i) in (26), the proof of (ii) is
completed using the Lyapunov functional (28) and
discrete-time Ho performance measure (10). The linear
matrix inequality (ii) in (26) implies that

AVE—25(8) T2o() + Puw(2) Tu(£)<0. (35)

Therefore we have

x(t) 17 [AFPA/~P+S+C3Cyy  AJPAy
x(t— d)] * —S+ALPAy
w(t) % *
AJPD; xAt)
ALPD, % (= d)} <0,
— 21+ DIpp, |l w(?)

(36)

Also, using the Schur complements and some changes of
variables, the following matrix inequality

AJPA,— P+S+C3Cy AfPAy AJPD,
* —S+ALPA,  ALPD, <0
* * — I+ D]PD;
€y

is changed to (ii) in (26). Furthermore, by the summation
both sides of the inequality (30) from 0 to 7,—1, we

obtain

Ti—1
- Zl(i)Tz;(t))xf(T/)TPx/(T/)—x/(O)TPxf(O)

1 _
S AP OICT ORI W FOLIOY
(3%

As the closed loop system is asymptotically stable, when
T~oo(or Ty—1—00) some terms go to zero. Hence we

get
a2 < 4(0) PR + B 4 TS,(0).69)

This is an upper bound of H: performance measure. The
first term of right hand side in (39) is changed to

—a+ ¢/(0)TP¢,(0)<0. This is equivalent to (iii) in (26).
The second term of right hand side in (39) has the
following relations

2 (78, = DTSN )

= t{NNTS) = t{ NTSN) < tH Q).

Therefore, — Q+ NTSNKQ is equal to (iv) in 26).
Similarly to the continuous time case, we can get the
optimal discrete time mixed H)/Ho filter satisfying the
filtering design objective (8). Also, all solutions including
filter variables( A= P;'M,, K= P;'M;) and the upper

bound of H, performance measure( J* = a+ t2(Q)) can be
calculated simultaneously because the proposed sufficient
conditions are LMIs regarding all finding variables.

Remark: The proposed filtering design algorithms can be
extended into the various kinds of continuous and discrete
time systems such as multiple time delay systems, parameter
uncertain time delay systems, convex bounded uncertain
systems, and so on. Also, our filtering design methods
include the guaranteed cost filtering design problems.
Moreover, the presented continuous and discrete mixed
Hy/H filtering design algorithms can be applied to the
system without time delay.

Example: Consider the following linear time delay system
given by

at) = [T Q]+ [ g ggglati-a)
[uo
y(8) = [1 0)x()+ w(t)
z(t) = [1 1]e(t)
2(t) = [1 2]e(t)
d=2 7y=1, ¢t)= [e™' 00.10]".

(41)

All solutions in Theorem 1 are obtained using the LMI
Toolbox[13] as follows:

P =10—4X[ 0.1806 —0.0283] p _[3.3239 3.6345]
! —004322883 0(.)03;)55 * T27]13.6345 4.6593)"
— -5 . el VN

S1=10 " 7)0':%2(5;5 0(.)16%23’

a-a [ 0.1346 —0.131

$2=10 x| 74 a1 0.6066]’
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_[ 0.3673 —0.2061] _
S [—0.2061 0.1519 | @ 0.-0334,
0.0000 0 0 0
_| 0 0.005 0.0031 0 4
9= 0 00031 00018 0 | “2)
01 33280 18193 0.0000 4.6349
M= _ 3620 —2:3296]’ M2=[4:6578 .

Therefore the stable continuous time filter and the upper
bound of H; performance measure are

ne N [ —2.1490 —0.0001
CON I oG

o Zosl Km0+ 2P0, @)

5 =0.0408.

The obtained stable continuous mixed Hy/Hw filter
guarantees not only the minimization of H, performance
measure but also the Ho norm bound of the closed loop
system within #(=1). In the case of discrete-time case, all
solutions in Theorem 2 are given as follows:

_n-5[ 0.4409 —0.0967 _71.3303 1.7085
Pi=107"x 0—0.03680&.12501 - B2 [1.7085 8.9450]
_ a5, [0.0878 0.
Si=10 X[g.om 8(1):1%%]
_ =4, [0.0292 0.
$>=10 X£0.013% 883298’
_[ 01741 —0. _
S=] ootass 0.0406 ) @=0-0133.
0.0000 0 0 0
o=| 0 0.0027 0.0015 0
0 0.0015 0.0008 0 |
00 01080 0 8523 00000 1.5863
Ml:[—0:0640 —4.4725)" MZ:[8:8381 '

(44)
Therefore the stable discrete time filter and the upper
bound of H, performance measure are

- 7 0.0014  0.0000 1=
e+ D=[ %0s 2 e000] #O

o —ol O [ oo 0 @

JF=0.0168.

The obtained stable discrete mixed Hy/Hw filter
guarantees minimization the upper bound of H, performance
measure and He. norm bound within prescribed 7.

II. Conclusion

In this paper, we proposed the mixed H»/He filtering
design algorithms for time delay systems in continuous time
case and discrete time case, respectively. The sufficient
conditions of the existence of filter and mixed Hy/Heo
filtering design method were presented using LMI approach.
The proposed stable mixed H,/He filter guaranteed
minimization the upper bound of H; performance measure
satisfying the H. norm bound within y. Also, we checked
the validity of the proposed method by an example.
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