Wavelet 변환을 이용한 이방성 적층판의 판파 해석과 음원 위치 결정

Wavelet Analysis of Plate Waves in Anisotropic Laminates and Acoustic Source Location

  • 장영수 (부산대학교 대학원 기계설계공학과) ;
  • 정현조 (원광대학교 기계공학부)
  • 발행 : 2000.02.01

초록

이방성 적층 복합재 판의 과도적인 파동 해석을 위한 새로운 방법을 제시하였다. Gabor wavelet을 사용하는 wavelet 변환을 분산성 굽힘파의 시간-주파수 해석에 적용하였다. 시간-주파수 영역에서 wavelet 변환의 크기의 최대값은 군속도의 도달시간을 나타냄을 보였다. 음향방출원으로서 연필심 파단을 사용하여 준등방성 판과 일방향 보강 적층판에서 실험을 수행하였다. 굽힘파의 분산 예측을 위하여 Mindlin 판이론을 사용하였으며,주파수의 함수로 몇 개의 방향에 대해 측정한 군속도 실험 결과와 잘 일치하였다. 굽힘파의 주파수 의존 도달 시간과 같은 파의군속도 방향의존성을 이용하여 이방성 판에서의 파손 위치를 결정하였으며, 그 결과를 제시하였다.

A new approach is presented for the analysis of transient waves propagating in anisotropic composite laminates. The wavelet transform (WT) using the Gabor wavelet is applied to the time-frequency analysis of dispersive flexural waves. It is shown that the peaks of the magnitude of WT in time-frequency domain is related to the arrival times of group velocity. Experiments are performed using a lead break as the simulated fracture source on the surface of quasi-isotropic and unidirectional laminates. For predictions of the dispersion of the flexural mode, Mindlin plate theory is shown to give good agreement with the experimental results. Based on the frequency-dependent arrival times and angular dependence of group velocities of flexural waves, the problem of source location in anisotropic laminates is considered and the results are given.

키워드

참고문헌

  1. Proceedings of Royal Society of London v.93 Waves in an Elastic Plate Lamb, H.
  2. Save Motion in Elastic Solids Graff, K. F.
  3. Review of Progress in Quantitative Nondestructive Evaluation v.11B Material Characterization of Composite Laminates Using Low-Frequency Plate Wave Dispersion Data Mal, A. K.;Gorman, M. R.;Prosser, W. H.
  4. Journal of Composite Materials v.24 Experimental Evaluation of Global Compossite Laminate Stiffnesses by Structural Wave Propagation Veidt, M.;Sayir, M.
  5. Journal of the Acoustical Society of America v.90 no.5 source location in Thin Plates Using Cross-Correlation Ziola, S. M.;Gorman, M. R.
  6. Wavelets and their Applications Ruskai, M. B.;Belykin, G.;Daubechies, I.;Meyer, Y.;Coifman, R.;Mallat, S.;Raphael, L.(Eds.)
  7. An Introduction to Wavelets Chui, C. K.
  8. Journal of Applied Mechanics v.62 Time Frequency Analysis of Dispersive Waves by Means of Wavelet Transform Kishimoto, K.;Inoue, H.;Hamada, M.;Shibuya, T.
  9. Journal of Acoustic Emission v.14 no.2 Wavelet Transform of Acoustic Emission Signals Suzuki, H.;Kinjo, T.;Hayashi, Y.;Takemoto, M.;Ono, K.
  10. To appear in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Fracture Source Location in Thin-Plates using the Wavelet Transform of Dispersive Waves Jeong, H.;Jang, Y.-S.
  11. Research in Nondestructive Evaluation v.1 Long Wavelength Approximation for Lamb Wave Characterization of Composite laminates Tang, B.;Henneke Ⅱ, E. G.
  12. Journal of the Acoustical Society of America v.96 no.2 Plate Mode Velocities in Graphite/Epoxy Plates Prosser, W. H.;Gorman, M. R.
  13. Non-Destructive Testing v.9 no.1 Acoustic Emission Source Location in Two Dimensions by an Array of Three Sensors Tobias, A.