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ABSTRACT

We present an efficient algorithm for finding the sequence of extreme vertices of a moving regular
convex polyhedron P with respect to a fixed plane H. The algorithm utilizes the spherical Voronoi diagram
that results from the outward unit normal vectors nF; ‘s of faces of P. It is well-known that the Voronoi
diagram of n sites in the plane can be computed in O(nlogn) time, and this bound is optimal. However,
exploiting the convexity of P, we are able to construct the spherical Voronoi diagram of nF; 's in O(n)
time. Using the spherical Voronoi diagram, we show that an extreme vertex problem can be transformed
to a spherical point location problem. The extreme vertex problem can be solved in O(logn) time after
O(n) time and space preprocessing. Moreover, the sequence of extreme vertices of a moving regular convex
polyhedron with respect to H can be found in O(logn+ Z m}) time, where mk (1<j<s) is the number
of edges of a spherical Voronoi region sreg(nF}() such i‘.hat F gives one or more extreme vertices.
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1. Problem Definition

The minimum Euclidean distance problem from
a 3D convex object P to an infinite plane H can
be reduced to an extreme vertex problem, i. e,
identifying a vertex of P that first touches H
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when H is translated toward P . Edelsbrunner [1]
was able to solve this problem in O(logn) time
after O(n) time and space preprocessing, where
n is the number of vertices in P. The efficiency
of his method is due to an elegant data structure
representing a hierarchy of convex polyhedra,
(P, P, -, P) nested in P such that P,=P, P,
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is a tetrahedron, /= O(logn), and P,,,CP, for all
0<i<i. In order to find the extreme point of F with
respect to H, the extreme vertex «, of the in—
nermost polyhedron P, is first identified in O(1)
time. q, gives a constant number of candidate ver—
tices of P;., to check for extremity. This yields
a -, from which a,-4 can be similarly derived,
and so on. It takes a constant time to move from
one polyhedron to the next. Since /= O(log ), the
extreme vertex a, of F with respect to H can be
found in O(logn) time.

In this paper, we are concerned with a more
generalized version of the extreme vertex problem
with the object in motion. Rigid motion consists
of translation and rotation. Since H is a fixed in-
finite plane, the extreme vertex of the object P
with respect to H is translation-invariant. There-
fore, it is sufficient to consider only rotation for
our purpose.

Let ¢(#), 0<t<1 be a curve that gives the
orientation of F at time ¢ [2]. The single rotation
about a unit vector » by angle 6 can be compactly
given by a vector r= 6u, where u=#/||7]| and
8=7l. Let 0<¢4<1, ¢=0,1,--, m, be a sequence
of discrete times such that 0= £<#<--<¢t,=1. By
sampling @(¢,) at carefully chosen t's, @(# can
be approximated by a sequence of rotation vectors,
(79, 71, . ¥ m_1), Where the i+ 1 ™ rotation vector
7, gives a single rotation about 7, by ||7;|| radians
during the time intervals #<t<t¢;,,[3].

Denoting by R;; an orthonormal matrix repre-
senting the sequence of rotations by (7;, 7 i+, ", #}),
Ry;=R,;;* Ry, where R;,is a single rotation
given by 7,. Now, our extreme vertex problem for
a moving object can be abstracted as follows:
Given a fixed infinite plane H, an object P with
a composite rotation matrix R, and a rotation
vector 7, find the sequence of extreme vertices of
P with respect to H while P, whose initial ori-
entation is given by R, is rotated about 7» by |7l
in a time interval [0, 1] with a constant speed.

In this framework, Edelsbrunner’s original prob-

lemn can be viewed as a special case of our problem
when 7 is a zero vector meaning no rotation at
all. Although the nested polyhedral hierarchy gives
an optimal solution for the special case, it is not
apparent to adapt the hierarchy to our problem. We
employ the notion of the Gauss sphere [4] to
construct spherical Voronoi diagrams for effi-
ciently solving both the original problem and its
generalized version.

The rest of this paper is organized in the fol-
lowing manner : In Section 2, we explain the basic
idea of this paper and show that an extreme vertex
problem can be transformed to a spherical point
location. In Section 3, we also show that the spher-
ical Voronoi diagram of » outward unit normal
vectors of faces in P can be computed in O(#n)
time. Section 4 presents an algorithm for solving
the generalized extreme vertex problem using the
spherical Voronoi diagram. Finally, we conclude
this paper with some remarks in Section 5.

2. Basic ldea

It is well~known that Voronoi diagrams play a
central role for solving a variety of proximity
problems [5,6]. In this section, we show that our
extreme vertex problem can be transformed to a
series of two closest point problems on 3D and 2D
spheres, respectively. We also show that these
proximity problems are essentially reduced to point
location problems by employing 3D and 2D spher-
ical Voronoi diagrams, in which the proximity
information among the faces and edges on the
boundary of the convex hull of a 3D object P is
embedded, respectively.

We start with characterizing a face of P, that
contains an extreme vertex of P with respect to
the plane H. Let the boundary of P consist of »
n. We denote the
outward unit normal vector of F, by nF, for each

convex faces, F;,, i=1,2, -

. Suppose that P is sufficiently apart from H so
that P always lies above H, which makes sense
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if we regard H as the surface of the ground. The
unit normal vector of H pointing below is denoted
by nH (see Figure 1). We establish a relationship
between »H and the normal vector »nF, of the

face F, of P containing an extreme vertex.

4 | w_

Fig. 1. Configuration of a plane H and a polvhe-
dron P.

Lemma 1 A face F, of a regular convex polyhe-
dron P contains an extreme vertex of P with
respect to H if

{nH,nF,>= max ; {nH,nF;, §))

where < nH,nF;> denotes the inner product of two
unit vectors, nH and #»F;. Moreover, all extreme
vertices of P lies on such a face F,.

[Proof] Let F, satisfy the condition given by
Equation (1). Suppose, for contradiction, that F,
does not contain any extreme vertices of P with
respect to H. Let v; be the closest point to H that
lies on F,. Since »nF, satisfies Equation (1), a
plane H that is parallel to H, locally supports P
at v, i. e, all faces containing v, lie above H.
Let »* be an extreme vertex of P with respect
to H. Since v* is closer to H than v, is, v™ lies
below H . Consider the line segment joining v*
and v,. The portion of the line segment that is
contained in an open neighborhood B(v,, &) for
arbitrarily small &>0 does not belong to P. This

contradicts the fact that P is convex. Hence, F,
must contain an extreme vertex. In order to prove
the second part of the lemma, consider H . Since
F, has an extreme point »* with respect to H,
P les above H. H may contain ¢*, an edge

containing v*, or F, itself. In any cases, all
extreme vertices lie in F,. []

Lemma 1 suggests how to find the face F,
containing all extreme vertices of F with respect
to H ; the inner product of »H and nF, is the
maximum over all inner products of #H and #F;
for all {=1,2,---,n. Let 6, be the angle between
nH and nF;. Then,

cos§;=<{nH,nF;> for 0<0,<r.

Therefore, Equation 1 can be rewritten as

follows:
cosf,=max ; cosf;, and 0<8,<x, i=1,2,".»n

Since cos4, is monotonically decreasing in 6, for
0<6,<a, 6, is the minimum angle between nH
and »nF; for all i.

nH and »nF;'s are unit vectors, that can be
mapped onto points on the Gauss sphere [4], i. e,
a unit sphere centered at the origin. Let C, be the
unit circle containing »H-and »F; on the sphere.
Then, 6; can be measured by the length of the
shorter arc on C; that connects two points nH
and »F; on the sphere. Therefore, the problem of
finding F, can be reduced to a closest point
problem on the sphere. Now, in order to identify
F,, we determine the closest point »F, to nH
among the points, =»nF;, ¢=1,2,--,n, on the
sphere. This can be transformed to a point location
problem using the spherical Voronoi diagram of
nF;'s.

Suppose that the face F, is found. We still need
to identify an extreme vertex of P among the
vertices in F,. In the worst case, the number of
vertices in F, is O(n), which causes an extra cost.
Clearly, F, is a convex polygon. Consider the
plane H, containing F,. Assuming that H, and
H are not parallel, let L, be the intersection line
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of H and H, (see Fig. 2).
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Fig. 2. The intersection line L« of two planes H
and Hk.

If H, and H are parallel, then L, is not well-
defined. In this case, every vertex of F, is an
extreme vertex of P with respect to H. Obviously,
an extreme vertex is closer to L, than the others
in F, are. The problem of finding an extreme
vertex of P with respect to H is reduced to a
similar problem of lower dimension, i. e., finding
an extreme vertex of the convex polygon F, with
respect to a line L,.

Let the boundary of F, be represented by a cycle
of vertices and edges (v, E),, v,  Eu . U,
E,., v), where v, and E, i=1,2,, n; denote
the % vertex and edge, respectively, and n is
the number of vertices in F,. E; connects two
adjacent vertices, v, and v;,,, where the sub-
scripts are taken modulo #,. E; can be considered
as a 2D face, and thus its outward unit normal
vector nkE; is well-defined. That is, nE; is the unit
vector on H,, which is perpendicular to E; and
pointing to the outside of F,. Similarly, »L, is
the unit vector on H, that is perpendicular to L,
and pointing downward. From Lemma 1, we can
directly characterize the edge E,, 1<m<n,, con-
taining an extreme vertex of P.

Corollary 1 Suppose that H, and H are not
parallel. The edge E,, of F, contains an extreme
vertex of P if <{uL,, nE,>= max ,{nl, nE).

The extreme vertex(vertices) of P can be de-
termined in (1) time from E,, ; either v,, or v ,,4,;
(or both). By the similar argument for finding F,,

Corollary 1 reduces the problem of finding E,, to
a 2D closest point problem on the unit circle
centered at the origin, i. e, the 2D Gauss sphere.
That is, given a set of », points »E; i=1,---, n,
on the unit circle centered at the origin, we find
the point closest to =L,. This problem can be
transformed to a point location problem after
constructing the 2D spherical Voronoi diagram
from those x, points. Since »E; i=1,--, n,;, are
sorted in accordance with their subscripts along
the boundary of F,, their spherical diagram is
obtained in ((#,) time by simply bisecting every
arc on the unit circle, that connects »E, and »E ;4
for 1<i<n,. Moreover, the 2D spherical Voronoi
diagrams for all faces of P can initially be
computed in O(») time and space as preproc-
essing.

3. Spherical Voronoi Diagram

Suppose that we are given a set S of » sites
on the unit sphere S For two distinct sites
p.q €S, the spherical dominance of p to gq,
denoted by sdom(p,q), is defined as the subset of
the sphere being at least as close to p as to gq.
Formally, sdom(p,q)= {xeS* | d(x,p)<d(x,9)},
where d(x,y) is the Euclidean distance between
x and y. Clearly, sdom(p,q) is a closed half sphere
divided by the perpendicular bisector of p» and gq.
This bisector separates all points of the sphere
closer to p from those closer to g and will be
termed the separator of p and ¢. The spherical
region, sreg(p)= ,,EQ msdom( 0.q) of a site pE S,
is the portion of the sphere lying in all of the
spherical dominances of p over the remaining sites
in S. The » spherical regions form a partition of
the unit sphere. This partition is called the spher-
ical Voronoi diagram, W(S), of the finite point
set S.

Brown [5] presented an O(nlog ») algorithm for
computing the spherical Voronoi diagram of =
points on the unit sphere, His algorithm consists
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of three major steps: The first step is to construct
the convex hull of #» points in O(znlog») time.
The next step is to compute the spherical Voronoi
vertices. Let u; be the point on the sphere that
is equi~distant from the three vertices of F;. Then,
u; is a spherical Voronoi vertex. It takes X#)
time to compute all Voronoi vertices. The final step
is to connect the Voronoi vertices in O(») time:
Two Voronoi vertices, #; and u; are connected
by an arc on a great circle (geodesic arc) if and
only if F; an F; share an edge. Clearly, the time
complexity of the first step dominates those of the
others. Hence, if the first step can be done in O(#n)
time, then we can construct the spherical Voronoi
diagram in O(») time. We exploit the point-plane
duality to achieve this time bound.
Consider a transformation that maps a point
p=(p,. p2,93) to a plane <{p,x>=px; + poxy +,
pax3=1, and vice versa [7]. This transformation
gives a dual D of the polyhedron P : Every vertex
v, of P corresponds to a face Dy, of D, and every
face F; of P does to a vertex DF; of D. Without
loss of generality, we may assume that P contains
the origin in its interior. Otherwise, we can always
translate P to satisfy this assumption, since an
extreme vertex with respect to H is translation-
invariant. It is well known that D is also a convex
polyhedron containing the origin in its interior.
Moreover, Dy, is a convex polygon forall v, € P.
For convenience, we relabel the faces containing
vi={x4,¥s 2% In P so that they form a cycle
(Fpo,Fpi, " Fpe-1), i.e, Fp;yand F,;, for
0<j(k share an edge of P, where the second
subscripts are taken modulo £ . v, is transformed
to a plane

{UnX>=2p%1+ Yixa+ 23 =1.

Since #F,; is the unit normal vector of F,;
of P, the plane containing F,; is given by

or W<—n(%hfi,x>=l.
.7

(nF,,',',x>= dh',',

Therefore, DF,;,=nF,; | d,; is a vertex of

Duv,, corresponding to F,; of P. Furthermore,

<vh,x>=llvh[l<n%i”,x> =1, or

Uy _ 1
ol = Toull -

That is, the convex polygon Dy, corresponding
to a vertex v, of P is contained in the plane
{vy x>=1 whose distance from the origin is
1 / llvll. We can easily verify that DF,; for
0<7<k lies on the plane (v, x>=1:

)]

F .
<vp DF 3> <v,,‘"Th%>=1,
, 7

since v, € F,;.

Due to the point-plane duality, DF, ;’s are the
vertices of the convex polygon Dv,, and the line
segment joining two vertices, DF, ; and DF, ;y;,
is an edge of Dwv,. As shown in Figure 2, the ray
from the origin to DF,; intersects the Gauss
sphere at »F,; . Therefore, Dy, is projected onto
the sphere as a spherical region whose boundary
can be represented by a sequence of points

(nF 40, nF 41,00 B 4 p-1).
Let H,; be the plane containing the origin,
nF;;, and #nF,;y,, 0<j< k. H,; divides the
space into two half-spaces, H}; and H ;. Let
H%; be the half-space containing Dv,. The
intersection of half-spaces H7,;, 0<j<k,is a cone
with the apex at the origin. Therefore, the spherical
region, that is the projection of Dv, onto the sphere,
is the intersection of the sphere and the cone. The
boundary of this region is represented by a
sequence of points (#F , o, #F 41, -, #nF 4 4—)) such
that »F, ; and j nF, ;4, are joined by a geodesic
arc for all 0<j<%. Moreover, the spherical region
is a simple spherical polygon on the sphere. Hence,
the sequence of the line segment joining »F, ; and
nF ', ;+1, 0<j<k, forms a simple closed piecewise

linear curve. We show that its orthographic pro-
jection onto a plane parallel to Dp, is a convex

polygon:

Lemma 2 The orthographic projection of the
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closed piecewise linear curve (nF , ,nF,,,
nF, ,-1) onto a plane parallel to Dy, is a convex
polygon.

[Proofl Let (n F g, nF -, nF, ) bethe
projection of the curve, where #n F,, 0<j<k, is
the projected image of n»nF,;. Suppose that the
projection is not convex. Since it is a simple closed
curve, there would exist one or more vertices of
the projection contained in the interior of the
convex hull of the projection. Take any of such
vertices, say nF—h, for some 0<j<k. Then, it
must be contained in the interior of the triangle
WFypaonFuunkF, ), where 0<a{b{c{k. The
inverse projection of the triangle onto the sphere

gives a spherical triangle (#F, ,, nF ;5 nF,0),
that contains »F, ; as an interior point. When the
spherical triangle is transformed back onto the
plane containing Dv;, DF,; lies in the interior of
the triangle (DF,,,DF, , DF,.), that is com-
pletely contained in Dv,. Thus, DF ,; is an interior
point of Dv;, which contradicts that Dv; is a
convex polygon. Hence, the result holds true. []

Aggarwal et. al [8] showed that the convex hull
of » points can be found in O(») time if their
projections onto a plane are the vertices of a
convex polygon. By Lemma 2, the points »F, ;,
0<j<k, satisfy this condition. Therefore, their
convex hull can be constructed in O(4) time. The
piecewise linear curve has another nice property
that is very useful to construct the convex hull of

nF,’s in O(n) time.

Lemma 3 The closed piecewise linear curve
(nF 0, nF, -, nF, 4—) consists of a subset of
edges of the convex hull of »nF; forall i=1,2,-, n.

[Proof] Since »F;’s lie on the Gauss sphere, all
of them are extreme points, i. e., the vertices of
the convex hull of nF,’s. Since nF,; € {nF,,
nFy, -, nF,} for all 0<j<k, =F,;'s are also
extreme points. We will be done if we show that

the line segment joining »F,,; and »F, ;; is an
edge of the convex hull of »F,’s.

Fig. 3. Point-plane duality and projections.

Remember that the projection of each face Dy,
of the dual D of the convex polyhedron P is a
spherical region (nF 4, nF 1, >, nF ,4-y). This
region is the intersection of the Gauss sphere and
the cone bounded by the planes H,; for all
0<j<{k. The geodesic arc connecting =»F,; and
nF 4 ;4 lieson H, ;, and so does the line segment
joining them. For every v, € P, the cone CO,
is well- defined, i. e., CO,=(\H7} ;. The set of all
these cones partitions the spﬂere into » disjoint
spherical regions. Any of the spherical regions does
not contain a spherical image »nF;, 1<:i<# in its
interior.

Suppose, for a contradiction, that a line segment
of the curve is not an edge of the convex hull of
nF;’s, say the line segment joining »F,; and
nF, ., for some 0</{k. Then, it must be a
diagonal. Therefore, the line segment excepting its
end points #»F,; and »nF, ;. is completely con~
tained in the interior of the cone CO,. If we project
the line segment back to Dwv,, it becomes a
diagonal of Dv,, which is a contradiction since the
inverse projection of the line segment is an edge
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of the convex polyhedron Dy,. Hence, the result
follows immediately. []

Now, we are ready to describe how to construct
the convex hull of the Gauss images »F;’s of the
normal vectors of the faces of P in ((#) time.
By Lemma 3, the set of all such curves, that result
from the faces of D, partitions the boundary of the
convex hull into # disjoint regions. Lemma 2
guarantees that the convex hull of each of these
regions can be found in linear time. Therefore, the
convex hull of nF;’s can be constructed in O(#)
time once all such curves are identified. The curves
are obtained in O(x) time by simply projecting the
faces of D onto the Gauss sphere with the origin
as the projection center. Given the convex hull of
nF;'s, the second and third steps of Brown's
algorithm take care of the remainder to construct
the spherical Voronoi diagram of #F;’s in O(n)
time.

Theorem 1 The convex hull of #F;’'s, 1<i<wu,
can be found in (X #%) time. Moreover, their spher-
ical Voronoi diagram can be constructed in the
same time bound.

4. Algorithm and Analysis

We first solve the extreme problem in the
translational case: Find the extreme vertex (ver-
tices) of a regular convex polyhedron P with re-
spect to a fixed infinite plane H when P is trans-
lated toward H. This problem can be transformed
into two point location problems: one to identify
the face containing an extreme vertex and the other
to find the edge with the same property.

Given the spherical Voronoi diagram of »nF;,
1<i<n, the former problem can be solved in
O(logn) time [6]. From Theorem 1, the Voronoi
diagram can be constructed in O(») time. There-
fore, it takes O(n) time to identify the face F,
containing an extreme vertex. If F, and H are
parallel, then we are done: All the vertices of F,

are extreme. Otherwise, we need to solve the latter
problem. From the edges of F,, the 2D spherical
Voronoi diagram can initially be constructed in
O(n;) time as preprocessing. The edge E,, con-
taining an extreme vertex can be found in O(log ;)
time from this Voronoi diagram in the similar
fashion. Finally, it takes constant time to determine
the extreme vertex (vertices) from E,,. Hence, the
following results hold true:

Theorem 2 The extreme vertex (vertices) of a
regular convex polyhedron P with respect to a
fixed plane H can be found in O(logn) time after
O(n) time preprocessing when the orientation of
P is also fixed.

The Voronoi diagram also plays a central role
to solve our generalized problem: Given a fixed
infinite plane H, an object P with a composite ro-
tation matrix R, and a rotation vector 7, find the
sequence of extreme vertices of P with respect to
H, while P with its initial orientation given by
R is rotated about » by lI4l in a time interval
[0, 1] with a constant speed.

While H is fixed, P rotates about » by |[|Al.
Every extreme vertex of P with respect to H is
dependent on the relative orientation of P to H.
Therefore, we can fix P and rotate H about —r
by Il for our purpose. Without loss of generality,
we assume that H moves around P, hereafter.
Under this assumption, »H moves and »F,’s are
fixed. The rotation of H for 0<¢<1 gives a curve
H(#) representing H at time ¢ and its orientation
path #H(%).

Clearly, the initial orientation #H(0) is R !« nH,
that is a unit vector corresponding to a point on
the Gauss sphere. Since this point rotates about
— 7, nH() for 0<t¢<1 generates a path on the
sphere, that is a circular arc. This path crosses
over a sequence of spherical Voronoi regions.
While the path is intersecting a spherical Voronoi

region sreg(nF,), a subsequence of extreme ver-
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tices are chosen from the vertices of the face F,.
Hence, we need to find the sequence of all time
instances at which the path makes a transverse
from a region to another.

We first determine the Voronoi region, sreg(nF?),
that contains #H(0) and then trace #H(#) on the
Gauss sphere to compute the sequence of all time
instances. Let S=(nFY, nFL, -, nF%) be the se-
quence of points such that #»H(f) intersects
sreg(nkF’), 0<j<s, as time ¢ varies from zero to
one. Notice that every pair of adjacent points in
the sequence S are distinct. sreg(nF%) can be
found in (logn) time by solving the point location
problem for the query point »H(0Q) against the
spherical Voronoi diagram. We scan every edge
of sreg(nF$) to compute the time at which nH(#)

first intersects the boundary of sreg(nF2). I nH({f)
does not intersect any edge, then it stays on

sreg(nFY for all 0<¢<i, i e, S=(nFY. Oth-
erwise, nH(D leaves sreg(nF3) through the inter-
section point to enter the next region, sreg(nFL).
In general, let sreg(nF}) be the j+1°% region
intersecting »H(# during time interval [£,#),
where ¢, and # are the times to enter and to leave
sreg(nF’), respectively. Clearly, #=t/"' if nH(d
intersects the boundary of sreg(nF%) after £,. #/7!

is the time at which »nH(® first intersects the
boundary of sreg(nFj*') after #/*'. For conve

nience, we set £=0, and £=1.Moreover, if #H(f)
just touches an edge of sreg(nF}) for some 0<j<s
but does not enter its interior, then £ = # and thus
the internal [#,, #] degenerates to a time instance.
Both »H(#H and every edge of each region are
circular arcs. Therefore, their intersection can
geometrically be obtained in constant time. Hence,
the following result is immediate:

Lemma 4 It takes (logn+ 2Dm£) time to
“
compute the sequence of all time instances at

which #»H(# intersects the boundaries of the
spherical Voronoi regions.

Given S= (nF9, nF}, -, nF}) and its correspon-
ding sequence of time intervals T=([ £, £),[ £, £},
- [£,£)), we characterize the solution of the
generalized extreme vertex problem, i. e., the
sequence of all extreme vertices of P with respect
to H. The sequence of all extreme vertices can
compactly be represented as an ordered list of
subsequences, denoted by EV=(EV, EV, -,
EV), where EV, (0<j<s, is the subsequence
while nH(#) stays at an sreg(nF}) for £<i<#,
Since two or more vertices of P may simul-
taneously be closest to H at the same time
instance, EV;, 0<j<s, is represented as a nested
ordered list. For example, when EV;=((v,, vs),
ve, V), the vertices v, and v, of the face F) are
extreme, then v, is, and finally v, becomes the
closest. If |{#]|=2x, 1. e., H rotates about — » more
than once, then EV is partially or completely
repeated. Without loss of generality, we assume
that {|7(|<2x. Otherwise, we can always extend
EV by cyclically repeating the verticesin EV. We
also assume that P does not hit H. This can easily
be checked by examining if the current extreme
vertex is below H.

Now, we focus on sreg(nF%) for some 0<j<s
to characterize EV during [#,#). At the time
instances £ and #, we can find the extreme
vertices v} and v, respectively, in ((log mh) time
due to Theorem 2 by solving the original 2D
extreme vertex problems since F) is given. Our
question is: What are the extreme vertices between
vh and U/s, ? One possibility is either the vertices
in the boundary of Fj from v} and v’;, in the
counter-clockwise order or those in the clockwise
order. The other possibility is : Neither is true.

In order to answer this question, we observe
the behavior of #»H(f) with respect to »F,. If
nH(t*) = nF), for some £,<¢*<#, then the face F
is parallel with the plane H({). Therefore, every
vertex of F) is an extreme vertex of P with
respect to H(#) at time t*. +* can be computed
in O(1) time. Suppose that nH(H+nF) for any
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E<#{#. Then, two planes H(# and H} containing

" meet along a line Li(# . Denoting by nLi(#
the unit vector that is perpendicular to L(#) and
lies on the plane H,, nLi(® is orthogonal to nF’.
Since three unit vectors nFY, nH(#), and nL’(f) are
orthogonal to L/(#, their corresponding points
on the Gauss sphere lie on a great circle. The
vector nL(#) is parallel to nH(&) —< nH(H,nF%>
nF’,. Since nLl(# is a unit vector, it is represented
by

nH(H) —<{ nH(D , nF’> nF
RH(H) —< nH (D, nFh> nF)|

nLi($)=

_ _nH() —<nH(), nF}> nF
V1= CnH(D, nF*

2

The vector nL(# plays the role of a query
point for the 2D spherical Voronoi diagram that is
obtained from the unit normal vectors #E;’'s of

edges on the boundary of Fj.

Without loss of generality, let »F%=1(0,0,1).
Then, »nH(#) can be simply represented in the
spherical coordinate system:

nH(H= (KD, §(1)), —a<&DH<rx, 0<p(H<7.
Thus, Equation (2), is reduced to

aLi(H = (8D, -5).
As confirmed in Fig. 4, 6(#) is the same both for

nH(H and znL(dH and gives their orientations

with respect to #nF}.

nLit)) mly)

wﬂ:f‘w_ﬂwy
\“\\_/

(a) in-type (b) ont-type

Fig. 4. The Movements of #H(£ and nLi(# : (a)
in-type (b) out-type

Remember that »#H(#$ is a circular arc (or a cir-
cle) on the Gauss sphere that is generated by
rotating #H(0) counter-clockwisely about — » by
14l (or equivalently, clockwisely about 7 by

{IAl). Let
th= cos ﬂ(ﬁ,nH(t’;)) and
&= cos ﬂ(ﬁ,nF’),) .

Depending on the relative positions of nH(£)
and nF’ with respect to —r, (8, £<K{E, can
be characterized as one of the following two types:
oD, £<tf, is said to be of in-type if =6} ;
otherwise, it is of out-type (see Fig. 4). Clearly,
the type classification can be done in constant time
for each Fj,. If &9, £<K £, is of in-type, then
nH(® winds around »F}. Therefore, #(# is mon
otone during the time interval [#, #). Otherwise,
6(¢) is not necessarily monotone. We later show
that 6(?) in this case can be decomposed into at
most three monotone curve segments in constant
time.

Suppose that #(# is monotone for [¢,,t) C
[£, £). From Theorem 2, we can find two extreme
vertices ¢, and v{g at ¢, and tg, respectively, in
O(logm’) time since F} is given. If 6(# is
monotonically increasing, then L{#) moves around
Ff, in the counter—clockwise order. Therefore, the
vertices of F, from v, to vf; along the boundary
in the same order gives the subsequence of
extreme vertices during [z, £5). Otherwise, the
subsequence is those in the clockwise sense. In
order to further improve efficiency, we implicitly
give a 4-tuple (v}, o5, F}, d) instead of explicitly
listing all vertices between ¢} and vfg. Here, d
denotes the direction: either clockwise or counter-
clockwise.

Now, we show how to check whether the mon-
otone curve segment &(#), ¢,<#{{y, is increasing
or decreasing. This can be done by observing that
the movement of Li(# with respect to F}. Notice
that »F,=(0,0,1), i. e., it points to positive z-
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axis. Let nL} (¢,) be the tangent vector of nLi(d
at ¢,. If the z-component of the cross product,
nLi(f) xnL’ (D, is positive, then (9 is increas
ing. Otherwise, 6(#) is decreasing. Obviously, this
check can be done in (1) time. Hence, the fol-
lowing result holds true:

Lemma 5 If 6(#) is monotone for some time

interval [t,,t5 C [£,£), then the subsequence
of extreme vertices during [¢,, f5) with respect to
H(® can be found in O(logm}) time, where i)

is the number of edges in sreg(nF%).

By Lemma 5, we can report, in O(log m}) time,
EV; that is the subsequence of extreme vertices
from F for [£,8),if D, £<i# is of in-type.
We show that the same time bound is achieved
even if 6(#) is of out-type. Our approach is to
decompose #(f at most three monotone curve
segments in O(1) time. We make use of #H() to
do it. »H($ rotates about —r in the counter-
clockwise order to generate a circular arc on the
Gauss sphere. Consider the orthogonal projection
of nH(D, E<t{#, onto the xy-plane (see Fig. 4
(b)). Since nH(# is a circular arc, its projection
is an elliptic arc. This projection preserves the
component &8 of nH(#. The projection of nF}
onto the plane is coincident with the origin of the
plane. Since 6(#), £<i ¢, is of out-type, the
origin is an exterior point of the ellipse that
contains the elliptic arc » H (£ projected from
nH(D, E.<i{#. Therefore, there are two points at
each of which a line passing the origin supports
nH (f). Let nH (t,) and #nH (t5) be such
points for £<t,<t,<f. If [£,#) degenerates to
apoint, then #= ¢, and thus #,= f,. In this case,
EV; consists of a single vertex that can be found
in O(logm}) time. Without loss of generality, we

assume that £+¢) to guarantee f,#¢;. There are
four cases:

(1) t.=t, and t3=1¢,

(2) £=t, and K¢,
(3) £<¢t, and tz=1¢),
(4) £<t, and 8.

In case (1), & for [£,#) is monotone in ¢.
4(1) is divided into two monotone curve segments:
one over [#, tp) and the other over [, #) in case
(2). Symmetrically, case (3) gives two monotone
curve segments divided at ¢,. Finally, in case (4),
#($H is divided into three monotone curve seg-
ments defined over [£,t), [¢, tp), and [¢g, £),
respectively. Since &(#, £<< £ consists of O(1)
monotone curve segments in every case, it takes

O(logm}) time to obtain EV, regardless of the
type of 6(# due to Lemma 5.

Lemma 6 The subsequence EV; of extreme
vertices for time interval [£, £) can be constructed
in O(logne}) time.

Now, we are ready to give how to solve our
generalized extreme vertex problem in O(logn

+ 21 m}) time. By Lemma 4, we obtain in (log »
&

+ B time  T—(LA,8).14 8. .16, ).

For each interval {#,,¢), EV, can be constructed
in O(log ) time. Therefore, it takes (X ]ZO log m})
time to find EV=(EV,,-, EV,). Hence, the result
foliows immediately.

Theorem 3 The sequence EV of all extreme
vertices of a moving regular polyhedron P with
respect to H can be found in O(logn+ Z}mi,)
time. "

5. Concluding Remarks

Voronoi diagrams play a central role for solving
a variety of proximity problems. We solve the
extreme vertex problem of a translating poly-
hedron with respect to a fixed plane by trans-
forming the problem to a point-location problem.
It is accomplished by constructing the spherical
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Voronoi diagram of the outward unit normal
vectors of faces of the polyhedron in linear time.
We extend this approach to efficiently solve the
generalized version of the extreme vertex problem,
where the polyhedron rotates about a fixed axis.
We finally pose a new interesting problem: Can
we solve the generalized problem in an output-

sensitive way?
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