DOI QR코드

DOI QR Code

The Validation of chlorophyll-a band ratio algorithm of coastal area using SeaWiFS wavelength

SeaWiFS 밴드역에 의한 연안해역의 엽록소 밴드비율 알고리듬 검증

  • Published : 2000.03.01

Abstract

Since being launched for ocean observing in 1997, the SeaWiFS sensor has supplied data on ocean chlorophyll distribution and environmental conditions of the atmosphere. Until now, a lot of SeaWiFS data have been archived and utilized for ocean monitoring and land observation. The SeaWiFS sensor has 1km spatial resolution, therefore, it is difficult to obtain data at the coastal zone. Since atmospheric correction algorithms at the coastal area have not been confirmed for chlorophyll algorithm, the ocean color data analysis for coastal zone is not common. In particular, domestic coastal areas have high suspended sediments concentrations and higher absorption influence of colored dissolved organic matter (CDOM), released from in-land, than open-sea. Thus, a useful algorithm for analysis of chlorophyll distribution in domestic coastal areas has not been developed. In this study, empirical algorithms, using data from the ocean color sensor, were developed for monitoring of chlorophyll distribution of coastal areas. In the process of the development of the algorithms, we can find that the red band (665nm) should be used for analyzing of domestic coastal areas near the Yellow Sea.

해양관측위성으로 1997년에 발사된 SeaWiFS 센서는 해양의 엽록소 분포와 대기환경 등 다양한 지구관측 자료를 제공하고 있고, 현재까지 수신된 많은 자료는 해양뿐만 아니라 육상관측에도 이용되고 있다. 하지만, SeaWIFS 센서는 1 km의 공간해상력으로 인해 연안해역의 관측이 어렵고, 연안역에서의 대기보정 문제가 아직 정립되지 않아 연안해역의 관측에는 아직 활발히 적용되지못하다. 특히, 서.남해 연안해역은 부유사 농도가 높고, 육상에서 비롯되는 용존유기물의 흡광으로 엽록소 분포를 분석하기에 적합한 알고리듬이 개발되지 못하고 있는 실정이다. 본 연구에서는 해양의 엽록소 농도분포를 분석하는데 활용되어온 경험적인 알고리듬을 바탕으로 연안해역의 엽록소 분포를 분석하기에 적합한 경험식을 도출하였으며, 이러한 경험식을 도출하는 과정에서 연안해역의 엽록소 농도 관측을 위해서는 레드영역의 밴드 (665nm)가 활용되어야 한다는 결론을 얻었다.

Keywords

References

  1. Limnol. Oceanogr. v.41 no.8 The 1991 coccolithophore bloom in the central North Altlantic 1. Optical properties and factors affecting their distribution Balch, W. M.;K. A. Kilpatrick;C. C. Trees
  2. Int. J. Remote Sens. v.14 no.5 The use of the Thematic Mapper for the analysis of eutrophic lakes : a case study in the Netherlands Dekker, A. G.;S. W. M. Peters
  3. Remote Sens. Environ. v.44 Estimating cholorophyll content and bathymethry of lake Tahoe using AVIRIS data Hamilton, M. K.;C. O. Davis;W. J. Rhea;S. H. Pilorz
  4. J. Coastal Res. v.12 no.4 Remote sensing of turbid coastal and estuarine waters: A method of multispectral watertype analysis Huh, O. K.;C. C. Moeller;W. P. Menzel;L. J. Rouse;H. H. Roberts
  5. SEABAM report Algorthms for Sea-WiFS standard products developed with the CalCOFI bio-opical data set Mitchell, B. G.;M. Kahru
  6. Int. J. Remote Sens. v.16 no.2 Landsat reflectivites versus Secchi disc depths Mulhearn, P. J.
  7. Int. J. Remote Sens. v.14 no.11 Remote sensing mapping of suspended sediments in Krishna Bay Estuary Reddy, N. A.
  8. J. Geoph. Res. v.103 no.C11 Ocean color chlorphyll algorithms for SeaWiFS O'Reilly, J. E;S. Maritorena;B. G. Mitchell;D. A. Siegel;K. L. Carder
  9. Applied Optics. v.33 no.6 Detection of phytoplankton pigments from Ocean Color - Improved Algorithms Sathyendranath, S.;F. E. Hoge;T. Platt;R. N. Swift
  10. Ph. D. thesis Water Quality Evaluation for Coastal Waters and Lake Sihwa Using Remote Sensing Techiques Jeong, J. C.