# A NOTE ON THE HYERS-ULAM-RASSIAS STABILITY OF PEXIDER EQUATION

YANG-HI LEE AND KIL-WOUNG JUN

ABSTRACT. In this paper we obtain the Hyers-Ulam-Rassias stability of the Pexider equation f(x+y)=g(x)+h(y) in the spirit of Hyers, Ulam, Rassias and Găvruta.

### 1. Introduction

In 1940, S. M. Ulam [13] posed the following question concerning the stability of homomorphisms:

Let  $G_1$  be a group and let  $G_2$  be a metric group with a metric  $d(\cdot,\cdot)$ . Given  $\epsilon > 0$ , does there exists a  $\delta > 0$  such that if a mapping  $h: G_1 \to G_2$  satisfies the inequality  $d(h(xy), h(x)h(y)) < \delta$  for all  $x, y \in G_1$  then a homomorphism  $H: G_1 \to G_2$  exists with  $d(h(x), H(x)) < \epsilon$  for all  $x \in G_1$ ?

The case of approximately additive mappings was solved by D. H. Hyers [2] under the assumption that  $G_1$  and  $G_2$  are Banach spaces.

Throughout this paper, we denote by X a Banach space. In 1978, Th. M. Rassias [11] gave a generalization of the Hyers' result in the following way:

Let V be a normed space and let  $f:V\to X$  be a mapping such that f(tx) is continuous in t for each fixed x. Assume that there exist  $\theta\geq 0$  and  $p\neq 1$  such that

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p)$$

for all  $x,y \in V$  (for all  $x,y \in V \setminus \{0\}$  if p < 0). Then there exists a unique linear mapping  $T: V \to X$  such that

$$||T(x) - f(x)|| \le \frac{2\theta}{|2 - 2^p|} ||x||^p$$

Received September 20, 1999.

<sup>1991</sup> Mathematics Subject Classification: Primary 39B72, 47H15.

Key words and phrases: Hyers-Ulam-Rassias stability, Jensen functional equation

for all  $x \in V$  (for all  $x \in V \setminus \{0\}$  if p < 0). However, it was showed that a similar result for the case p = 1 does not hold (see [12]). Recently, Găvruta [1] also obtained a further generalization of the Hyers-Rassias theorem (see also [3,4,7,9]).

According to Theorem 6 in [10], a mapping  $f: V \to X$  satisfying f(0) = 0 is a solution of the Jensen's functional equation

$$2f\left(\frac{x+y}{2}\right) = f(x) + f(y)$$

if and only if it satisfies the additive Cauchy equation f(x + y) = f(x) + f(y).

In this paper, using the idea from the papers of D. H. Hyers [2], Th. M. Rassias [11] and Găvruta [1], we obtain the Hyers-Ulam-Rassias stability of the Jensen equation and the Pexider equation:

$$f(x+y) = g(x) + h(y).$$

The following result follows from Lemma 2.1 and Lemma 3.1.

THEOREM 1.1. Let V be a normed space and let  $f: V \to X$  be a mapping. Assume that there exist  $\theta \geq 0$  and  $p \in [0, \infty) \setminus \{1\}$  such that

$$\left\|2f\left(rac{x+y}{2}
ight)-f(x)-f(y)
ight\|\leq heta(\|x\|^p+\|y\|^p)$$

for all  $x, y \in V$ . Then there exists a unique additive mapping  $T: V \to X$  such that

$$||T(x) - f(x) + f(0)|| \le \frac{2^p \theta}{|2 - 2^p|} ||x||^p$$

for all  $x \in V$ .

We obtain the following theorem from Corollary 2.5 and Corollary 3.4.

THEOREM 1.2. Let V be a normed space and let  $f, g, h : V \to X$  be mappings. Assume that there exist  $\theta \geq 0$  and  $p \in [0, \infty) \setminus \{1\}$  such that

$$||f(x+y) - g(x) - h(y)|| \le \theta(||x||^p + ||y||^p)$$

for all  $x, y \in V$ . Then there exists a unique additive mapping  $T: V \to X$  such that

$$||T(x) - f(x) + f(0)|| \le \frac{4\theta}{|2^p - 2|} ||x||^p + \theta M$$

$$||T(x) - g(x) + g(0)|| \le \frac{(4 + 2^p)\theta}{|2^p - 2|} ||x||^p + \theta M$$

$$||T(x) - h(x) + h(0)|| \le \frac{(4 + 2^p)\theta}{|2^p - 2|} ||x||^p + \theta M$$

for all  $x \in V$  where M = ||f(0) - g(0) - h(0)|| (if 1 < p then M = 0).

## 2. Stability in the case p < 1

We denote by G an abelian group. We also denote by  $\varphi: G \times G \to [0,\infty)$  a mapping such that

(1) 
$$\tilde{\varphi}(x,y) := \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x, 2^k y) < \infty$$

for all  $x, y \in G$ . It is easy to show that  $\tilde{\varphi}(0,0) = 2\varphi(0,0)$  and  $\varphi(0,0)$  can be replaced by an arbitrary nonnegative real number without the loss of property (1). The following lemma for the stability of Jensen's equation is well known (see [6,8]).

Lemma 2.1. Let  $f: G \to X$  be a mapping such that

(2) 
$$\left\| 2f\left(\frac{x+y}{2}\right) - f(x) - f(y) \right\| \le \varphi(x,y)$$

for all  $x,y \in 2G$ . Then there exists a unique mapping  $T:G \to X$  such that

$$T(x+y) = T(x) + T(y)$$
 for all  $x, y \in G$ ,

(3) 
$$||T(x) - f(x) + f(0)|| \le \frac{1}{2}\tilde{\varphi}(2x, 0)$$
 for all  $x \in G$ 

and

$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$
 for  $x \in G$ .

*Proof.* Let g(x) = f(x) - f(0). Then g satisfies (2) and  $\varphi$  satisfies (1) and (2). From this we can assume that f(0) = 0 without the loss of generality.

Replacing x by  $2^{n+1}x$  and y by 0 and dividing  $2^{n+1}$  on the both sides in (2), we have

(4) 
$$||2^{-n}f(2^nx) - 2^{-n-1}f(2^{n+1}x)|| \le 2^{-n-1}\varphi(2^{n+1}x,0).$$

Hence

$$||2^{-m}f(2^{m}x) - 2^{-n}f(2^{n}x)|| \le \sum_{i=m}^{n-1} ||2^{-i}f(2^{i}x) - 2^{-i-1}f(2^{i+1}x)||$$

$$(5)$$

$$\le \sum_{i=m}^{n-1} 2^{-i-1}\varphi(2^{i+1}x, 0)$$

for n > m. From (1) and (5), we obtain the sequence  $\{2^{-n}f(2^nx)\}$  is a Cauchy sequence. Because X is a Banach space, the sequence  $\{2^{-n}f(2^nx)\}$  converges. Denote

$$T(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$$

for all x in G. By the definition of T and (2)

$$2T(x+y) = 2T\left(\frac{2x+2y}{2}\right) = T(2x) + T(2y) = 2(T(x) + T(y))$$

for all  $x, y \in G$ . This proves that

$$T(x+y) = T(x) + T(y)$$
 for all  $x, y \in G$ .

From (4), we obtain

$$||f(x) - 2^{-n}f(2^nx)|| \le \sum_{i=0}^{n-1} ||2^{-i}f(2^ix) - 2^{-i-1}f(2^{i+1}x)||$$

$$\le \sum_{i=0}^{n-1} 2^{-i-1}\varphi(2^{i+1}x, 0)$$

$$\le 2^{-1}\tilde{\varphi}(2x, 0).$$

Taking the limit in the above inequality, we obtain (3). Now we prove the uniqueness of T. Let  $S: G \to X$  be another additive mapping satisfying (3). Then

$$||S(x) - T(x)|| \le \left\| \frac{S(2^n x)}{2^n} - \frac{f(2^n x) - f(0)}{2^n} \right\| + \left\| \frac{f(2^n x) - f(0)}{2^n} - \frac{T(2^n x)}{2^n} \right\|$$

$$\le \frac{\tilde{\varphi}(2^{n+1} x, 0)}{2^n}.$$

Taking the limit in the above inequality as  $n \to \infty$ , we obtain

$$S(x) = T(x).$$

From Lemma 2.1, we can modify the results of [5] in the following theorem.

THEOREM 2.2. Let  $f, g, h: G \to X$  be mappings such that

(6) 
$$||f(x+y) - g(x) - h(y)|| \le \varphi(x,y)$$

for all  $x, y \in G$ . Then there exists a unique additive mapping  $T: G \to G$ X such that

$$(7) ||T(x) - f(x) + f(0)|| \le \frac{1}{2} [\tilde{\varphi}(x,0) + \tilde{\varphi}(0,x) + \tilde{\varphi}(x,x)] + M,$$

(8) 
$$||T(x) - g(x) + g(0)|| \le \frac{1}{2} [\tilde{\varphi}(x, -x) + \tilde{\varphi}(x, 0) + \tilde{\varphi}(2x, -x)] + M,$$

$$(9) \quad \|T(x) - h(x) + h(0)\| \leq \frac{1}{2} [\tilde{\varphi}(-x,x) + \tilde{\varphi}(0,x) + \tilde{\varphi}(-x,2x)] + M$$

where 
$$M = ||f(0) - g(0) - h(0)||$$
 and (10)

$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} = \lim_{n \to \infty} \frac{g(2^n x)}{2^n} = \lim_{n \to \infty} \frac{h(2^n x)}{2^n} \text{ for } x \in G.$$

*Proof.* We can replace  $\varphi(0,0)$  by ||f(0) - g(0) - h(0)|| without the loss of property (1) and (6). From (6), we get

$$\begin{aligned} & \left\| 2f\left(\frac{x+y}{2}\right) - f(x) - f(y) \right\| \\ & \leq \left\| f\left(\frac{x+y}{2}\right) - g\left(\frac{x}{2}\right) - h\left(\frac{y}{2}\right) \right\| + \left\| f\left(\frac{x+y}{2}\right) - g\left(\frac{y}{2}\right) - h\left(\frac{x}{2}\right) \right\| \\ & + \left\| f(x) - g\left(\frac{x}{2}\right) - h\left(\frac{x}{2}\right) \right\| + \left\| f(y) - g\left(\frac{y}{2}\right) - h\left(\frac{y}{2}\right) \right\| \\ & \leq \varphi\left(\frac{x}{2}, \frac{y}{2}\right) + \varphi\left(\frac{y}{2}, \frac{x}{2}\right) + \varphi\left(\frac{x}{2}, \frac{x}{2}\right) + \varphi\left(\frac{y}{2}, \frac{y}{2}\right) \end{aligned}$$

for all  $x, y \in 2G$ . Let

$$\varphi_1(x,y) = \varphi\left(\frac{x}{2}, \frac{y}{2}\right) + \varphi\left(\frac{y}{2}, \frac{x}{2}\right) + \varphi\left(\frac{x}{2}, \frac{x}{2}\right) + \varphi\left(\frac{y}{2}, \frac{y}{2}\right)$$

for all  $x, y \in 2G$ . Applying Lemma 2.1, there exists a unique mapping  $T: G \to X$  satisfying (7) and

(11) 
$$T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} \text{ for } x \in G.$$

From (6), we get

$$\begin{split} & \left\| 2g\left(\frac{x+y}{2}\right) - g(x) - g(y) \right\| \\ & \leq \left\| f\left(\frac{y}{2}\right) - g\left(\frac{x+y}{2}\right) - h\left(\frac{-x}{2}\right) \right\| + \left\| f\left(\frac{x}{2}\right) - g\left(\frac{x+y}{2}\right) - h\left(\frac{-y}{2}\right) \right\| \\ & + \left\| - f\left(\frac{x}{2}\right) + g(x) + h\left(\frac{-x}{2}\right) \right\| + \left\| - f\left(\frac{y}{2}\right) + g(y) + h\left(-\frac{y}{2}\right) \right\| \\ & \leq \varphi\left(\frac{x+y}{2}, -\frac{x}{2}\right) + \varphi\left(\frac{x+y}{2}, -\frac{y}{2}\right) + \varphi\left(x, -\frac{x}{2}\right) + \varphi\left(y, -\frac{y}{2}\right) \end{split}$$

for all  $x, y \in 2G$ . Let

$$\varphi_2(x,y) = \varphi\Big(\frac{x+y}{2}, -\frac{x}{2}\Big) + \varphi\Big(\frac{x+y}{2}, -\frac{y}{2}\Big) + \varphi\Big(x, -\frac{x}{2}\Big) + \varphi\Big(y, -\frac{y}{2}\Big)$$

for all  $x, y \in 2G$ . Applying Lemma 2.1 again, there exists a unique mapping  $T_1: G \to X$  satisfying (8) and

(12) 
$$T_1(x) = \lim_{n \to \infty} \frac{g(2^n x)}{2^n} \text{ for } x \in G.$$

From (6), we get

$$\begin{split} & \left\| 2h\left(\frac{x+y}{2}\right) - h(x) - h(y) \right\| \\ & \leq \left\| f\left(\frac{y}{2}\right) - g\left(\frac{-x}{2}\right) - h\left(\frac{x+y}{2}\right) \right\| + \left\| f\left(\frac{x}{2}\right) - g\left(\frac{-y}{2}\right) - h\left(\frac{x+y}{2}\right) \right\| \\ & + \left\| - f\left(\frac{x}{2}\right) + g\left(\frac{-x}{2}\right) + h(x) \right\| + \left\| - f\left(\frac{y}{2}\right) + g\left(-\frac{y}{2}\right) + h(y) \right\| \\ & \leq \varphi\left(-\frac{x}{2}, \frac{x+y}{2}\right) + \varphi\left(-\frac{y}{2}, \frac{x+y}{2}\right) + \varphi\left(-\frac{x}{2}, x\right) + \varphi\left(-\frac{y}{2}, y\right) \end{split}$$

for all  $x, y \in 2G$ . Let

$$\varphi_3(x,y) = \varphi\Big(-\frac{x}{2},\frac{x+y}{2}\Big) + \varphi\Big(-\frac{y}{2},\frac{x+y}{2}\Big) + \varphi\Big(-\frac{x}{2},x\Big) + \varphi\Big(-\frac{y}{2},y\Big)$$

for all  $x, y \in 2G$ . Similarly, there exists a unique mapping  $T_2: G \to X$  satisfying (9) and

(13) 
$$T_2(x) = \lim_{n \to \infty} \frac{h(2^n x)}{2^n} \quad \text{for } x \in G.$$

Replacing x by  $2^n x$  and y by 0 in (6), we get

(14) 
$$\left\| \frac{f(2^n x)}{2^n} - \frac{g(2^n x)}{2^n} \right\| \le \frac{1}{2^n} \varphi(2^n x, 0).$$

Taking the limit in (14), we obtain

$$T(x) = T_1(x)$$
 for  $x \in G$ .

By the similar method we have  $T = T_2$ . From (11), (12) and (13), we obtain (10).

COROLLARY 2.3. Let V be a vector space. Let  $f,g,h:V\to X$  be mappings such that

$$|| f(x+y) - g(x) - h(y) || < \varphi(x,y)$$

for all  $x, y \in V$ . Then there exists a unique additive mapping  $T: V \to X$  satisfying (7), (8), (9) and (10).

The following corollary is a generalization of Theorem 1 in [4]

COROLLARY 2.4. Let V be a normed space. Let  $\psi:[0,\infty)\to R^+$ be a function such that

- (i)  $\psi(ts) \leq \psi(t)\psi(s)$  for all t, s > 0 and
- (ii)  $\psi(2)/2 < 1$ .

Let  $f, g, h: V \rightarrow X$  be mappings such that

$$||f(x+y) - g(x) - h(y)|| \le \psi(||x||) + \psi(||y||)$$
 for  $x \ne 0$  or  $y \ne 0$ .

Then there exists a unique additive mapping  $T: V \to X$  such that

$$||T(x) - f(x) + f(0)|| \le \frac{4\psi(||x||)}{2 - \psi(2)} + 2\psi(0) + M$$

$$||T(x) - g(x) + g(0)|| \le \frac{(4 + \psi(2))\psi(||x||)}{2 - \psi(2)} + \psi(0) + M$$

$$||T(x) - h(x) + h(0)|| \le \frac{(4 + \psi(2))\psi(||x||)}{2 - \psi(2)} + \psi(0) + M$$

for all  $x \in V$  where M = ||f(0) - g(0) - h(0)|| and T satisfies (10).

Proof. Define 
$$\varphi: V \times V \to [0, \infty)$$
 by 
$$\varphi(x,y) = \begin{cases} \psi(\|x\|) + \psi(\|y\|) & \text{if } x \neq 0 \text{ or } y \neq 0 \\ \|f(0) - g(0) - h(0)\| & \text{if } x = 0 \text{ and } y = 0. \end{cases}$$

Then we get

$$\tilde{\varphi}(x,y) = \sum_{n=0}^{\infty} 2^{-n} \varphi(2^n x, 2^n y)$$

$$\leq \sum_{n=0}^{\infty} (\psi(2)/2)^n (\psi(\|x\|) + \psi(\|y\|))$$

$$= \frac{\psi(\|x\|) + \psi(\|y\|)}{1 - \psi(2)/2}$$
(16)

for all  $x, y \in V \setminus \{0\}$  from (i) and (ii). By the similar method as (16),

$$\tilde{\varphi}(x,y) = \begin{cases} 2\psi(0) + \frac{2\psi(\|y\|)}{2-\psi(2)} & \text{if } x = 0 \text{ and } y \neq 0 \\ \frac{2\psi(\|x\|)}{2-\psi(2)} + 2\psi(0) & \text{if } x \neq 0 \text{ and } y = 0 \\ 2\|f(0) - g(0) - h(0)\| & \text{if } x = 0 \text{ and } y = 0. \end{cases}$$

Applying Corollary 2.3, there exists a unique additive mapping T:  $V \to X$  satisfying (15) for all  $x \neq 0$ .  COROLLARY 2.5. Let V be a normed space and let  $f, g, h : V \to X$  be mappings. Assume that there exist  $\theta > 0$  and  $p \in [0, 1)$  such that

$$||f(x+y)-g(x)-h(y)|| \le \theta(||x||^p+||y||^p)$$
 for  $x\ne 0$  or  $y\ne 0$ .

Then there exists a unique additive mapping  $T: V \to X$  such that

$$||T(x) - f(x) + f(0)|| \le \frac{4\theta}{2 - 2^p} ||x||^p + \theta M$$

$$||T(x) - g(x) + g(0)|| \le \frac{(4 + 2^p)\theta}{2 - 2^p} ||x||^p + \theta M$$

$$||T(x) - h(x) + h(0)|| \le \frac{(4 + 2^p)\theta}{2 - 2^p} ||x||^p + \theta M$$

for all  $x \in V$ , where M = ||f(0) - g(0) - h(0)||.

*Proof.* Define mappings  $f_1,g_1,h_1:V\to X$  by  $f_1(x)=\frac{1}{\theta}f(x),$   $g_1(x)=\frac{1}{\theta}g(x),$   $h_1(x)=\frac{1}{\theta}h(x)$  for all  $x\in V$ . Define  $\psi:[0,\infty)\to R^+$  by  $\psi(t)=t^p$  and apply Corollary 2.4.

It is easy to know that if  $2f(\frac{x+y}{2}) - f(x) - f(y) = 0$ , then f(x) - f(0) is an additive mapping. The Pexider equation satisfying the similar result is shown in the following corollary.

COROLLARY 2.6. Let V be a normed space. Let  $f, g, h : V \to X$  be mappings such that

$$f(x+y) - g(x) - h(y) = 0$$
 for  $x, y \in V$ .

Then f(x) - f(0), g(x) - g(0) and h(x) - h(0) are additive mappings such that

$$f(x) - f(0) = g(x) - g(0) = h(x) - h(0)$$

for all  $x \in V$ .

*Proof.* Define  $\varphi(x,y): V \times V \to [0,\infty)$  by  $\varphi(x,y) = 0$  for all  $x,y \in V$ , and apply Theorem 2.2.

## 3. Stability in the case p > 1

Let  $\phi: V \times V \to [0, \infty)$  be a mapping such that

(17) 
$$\tilde{\phi}(x,y) := \sum_{k=0}^{\infty} 2^k \phi(2^{-k}x, 2^{-k}y) < \infty.$$

It is easy to show that  $\tilde{\phi}(0,0) = \phi(0,0) = 0$ . Then we follow a similar approach as the above arguments and obtain the results from Lemma 3.1 to Corollary 3.4.

LEMMA 3.1. Let V be a vector space. Let  $f:V\to X$  be a mapping such that

(18) 
$$\left\|2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\right\| \le \phi(x,y)$$

for all  $x, y \in V$ . Then there exists a unique additive mapping  $T: V \to X$  such that

(19) 
$$||T(x) - f(x) + f(0)|| \le \tilde{\phi}(x, 0)$$
 for all  $x \in V$ 

and

$$T(x) = \lim_{n \to \infty} 2^n (f(2^{-n}x) - f(0))$$

for all  $x \in V$ .

*Proof.* We can assume that f(0) = 0 without the loss of generality. We obtain the sequence  $\{2^n f(2^{-n}x)\}$  is a Cauchy sequence. Denote

$$T(x) = \lim_{n \to \infty} 2^n f(2^{-n}x)$$

for all x in V. Then it is easy to show that T is a unique additive mapping satisfying (19).

Theorem 3.2. Let V be a vector space. Let  $f,g,h:V\to X$  be mappings such that

(20) 
$$||f(x+y) - g(x) - h(y)|| \le \phi(x,y)$$

for all  $x,y \in V$ . Then there exists a unique additive mapping  $T:V \to X$  such that

$$\begin{split} \|T(x)-f(x)+f(0)\| &\leq \tilde{\phi}\left(\frac{x}{2},0\right)+\tilde{\phi}\left(0,\frac{x}{2}\right)+\tilde{\phi}\left(\frac{x}{2},\frac{x}{2}\right)\\ \|T(x)-g(x)+g(0)\| &\leq \tilde{\phi}\left(\frac{x}{2},-\frac{x}{2}\right)+\tilde{\phi}\left(\frac{x}{2},0\right)+\tilde{\phi}\left(x,-\frac{x}{2}\right)\\ \|T(x)-h(x)+h(0)\| &\leq \tilde{\phi}\left(-\frac{x}{2},\frac{x}{2}\right)+\tilde{\phi}\left(0,\frac{x}{2}\right)+\tilde{\phi}\left(-\frac{x}{2},x\right) \end{split}$$

for all  $x \in V$  and

(21) 
$$T(x) = \begin{cases} \lim_{n \to \infty} 2^n [f(2^{-n}x) - f(0)] \\ \lim_{n \to \infty} 2^n [g(2^{-n}x) - g(0)] & \text{for all } x \in V. \\ \lim_{n \to \infty} 2^n [h(2^{-n}x) - h(0)] \end{cases}$$

Proof. As the result in the proof of Theorem 2.2, we get

$$\begin{split} & \left\| 2f\left(\frac{x+y}{2}\right) - f(x) - f(y) \right\| \\ & \leq \phi\left(\frac{x}{2}, \frac{y}{2}\right) + \phi\left(\frac{y}{2}, \frac{x}{2}\right) + \phi\left(\frac{x}{2}, \frac{x}{2}\right) + \phi\left(\frac{y}{2}, \frac{y}{2}\right) \\ & \left\| 2g\left(\frac{x+y}{2}\right) - g(x) - g(y) \right\| \\ & \leq \varphi\left(\frac{x+y}{2}, -\frac{x}{2}\right) + \varphi\left(\frac{x+y}{2}, -\frac{y}{2}\right) + \varphi\left(x, -\frac{x}{2}\right) + \varphi\left(y, -\frac{y}{2}\right) \\ & \left\| 2h\left(\frac{x+y}{2}\right) - h(x) - h(y) \right\| \\ & \leq \varphi\left(-\frac{x}{2}, \frac{x+y}{2}\right) + \varphi\left(-\frac{y}{2}, \frac{x+y}{2}\right) + \varphi\left(-\frac{x}{2}, x\right) + \varphi\left(-\frac{y}{2}, y\right) \end{split}$$

for all  $x, y \in V$ . From the above and Lemma 3.1, there exist  $T, T_1$  and  $T_2$  such that

$$egin{aligned} \|T(x)-f(x)+f(0)\|&\leq ilde{\phi}\Big(rac{x}{2},0\Big)+ ilde{\phi}\Big(0,rac{x}{2}\Big)+ ilde{\phi}\Big(rac{x}{2},rac{x}{2}\Big)\ \|T_1(x)-g(x)+g(0)\|&\leq ilde{\phi}\Big(rac{x}{2},-rac{x}{2}\Big)+ ilde{\phi}\Big(rac{x}{2},0\Big)+ ilde{\phi}\Big(x,-rac{x}{2}\Big)\ \|T_2(x)-h(x)+h(0)\|&\leq ilde{\phi}\Big(-rac{x}{2},rac{x}{2}\Big)+ ilde{\phi}\Big(0,rac{x}{2}\Big)+ ilde{\phi}\Big(-rac{x}{2},x\Big). \end{aligned}$$

Replacing x by  $2^{-n}x$  and y by 0 in (20) and multiplying  $2^n$  on both sides of (20), we get

(22) 
$$||2^{n}[f(2^{-n}x) - f(0)] - 2^{n}[g(2^{-n}x) - g(0)]||$$

$$= 2^{n}||f(2^{-n}x) - g(2^{-n}x) - h(0)||$$

$$\leq 2^{n}\phi(2^{-n}x, 0).$$

Taking the limit in (22), we obtain

$$T(x) = T_1(x)$$
 for all  $x \in V$ .

Similarly we have  $T = T_2$ .

Corollary 3.3. Let V be a normed space. Let a function  $\psi:[0,a) \to [0,\infty)$  satisfy

- (i)  $\psi(ts) \ge \psi(t)\psi(s) > 0$  for all 0 < t, s,
- (ii)  $\psi(2)/2 > 1$  and
- (iii)  $\psi(0) = 0$ .

Let  $f, g, h: V \to X$  be mappings such that

$$||f(x+y) - g(x) - h(y)|| \le \psi(||x||) + \psi(||y||)$$

for all  $x,y \in V$ . Then there exists a unique additive mapping  $T:V \to X$  such that

$$||T(x) - f(x) + f(0)|| \le \frac{4\psi(||x||)}{\psi(2) - 2}$$

$$||T(x) - g(x) + g(0)|| \le \frac{(4 + 2^p)\psi(||x||)}{\psi(2) - 2}$$

$$||T(x) - h(x) + h(0)|| \le \frac{(4 + 2^p)\psi(||x||)}{\psi(2) - 2}$$

for all  $x \in V$  and T satisfies (21).

*Proof.* Let  $\phi(x,y) = \psi(||x||) + \psi(||y||)$  for all  $x,y \in V$ . We get

$$\begin{split} \tilde{\phi}(x,y) &= \sum_{n=0}^{\infty} 2^n \phi(2^{-n}x, 2^{-n}y) \\ &= \sum_{n=0}^{\infty} 2^n (\psi(\|2^{-n}x\|) + \psi(\|2^{-n}y\|)) \\ &\leq \sum_{n=0}^{\infty} (2/\psi(2))^n (\psi(\|x\|) + \psi(\|y\|)) \\ &= \frac{\psi(\|x\|) + \psi(\|y\|)}{1 - 2/\psi(2)} < \infty \end{split}$$

from (i), (ii) and (iii). Applying Theorem 3.2, the proof is completed.□

COROLLARY 3.4. Let V be a normed space and let  $f, g, h : V \to X$  be mappings. Assume that there exist  $\theta > 0$  and p > 1 such that

$$||f(x+y) - g(x) - h(y)|| \le \theta(||x||^p + ||y||^p)$$
 for all  $x, y \in V$ .

Then there exists a unique additive mapping  $T: V \to X$  such that

$$||f(x) - T(x) - f(0)|| \le \frac{4\theta}{2^p - 2} ||x||^p$$

$$||g(x) - T(x) - g(0)|| \le \frac{(4 + 2^p)\theta}{2^p - 2} ||x||^p$$

$$||h(x) - T(x) - h(0)|| \le \frac{(4 + 2^p)\theta}{2^p - 2} ||x||^p$$

for all  $x \in V$  and T satisfies (21).

#### References

- [1] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. of Math. Anal. and Appl. 184 (1994), 431-436.
- [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224,
- [3] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, 1998.

- [4] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of  $\psi$ -additive mappings, J. Approx. Theory **72** (1993), 131-137.
- [5] K. W. Jun D. S. Shin and B. D. Kim, On the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 239 (1999), 20-29.
- [6] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
- [7] \_\_\_\_\_, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996), 221-226.
- [8] Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
- [9] \_\_\_\_\_, On the stability of approximately additive mappings, Proc. Amer. Math. Soc., to appear.
- [10] J. C. Parnami and H. L. Vasudeva, On Jensen's functional equation, Aeq. Math. 43 (1992), 211-218.
- [11] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [12] Th. M. Rassias and P. Šemrl, On the behavior of mappings which does not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
- [13] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Science eds., Wiley, Newyork, 1960.

Yang-Hi Lee

Department of Mathematics Education Kongju National University of Education Kongju 314-060, Korea *E-mail*: lyhmzi@kongjuw2.kongju-e.ac.kr

Kil-Woung Jun
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
E-mail: kwjun@math.chungnam.ac.kr