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ON THE LANDSBERG SPACES OF DIMENSION TWO
WITH A SPECIAL (¢,3)-METRIC

HonG-Sun PARK AND IL-YONG LEE*

ABSTRACT. The present paper is devoted to studying the condition
that a two-dimensional Finsler space with a special {«, 8)-metric be
a Landsberg space. It is proved that if a Finsler space with a special
(o, B)-metric is a Landsberg space, then it is a Berwald space.

1. Introduction

We consider a Finsler space with the Cartan connection CT. If
the covariant derivative Cj,;;jx of the C-torsion tensor of CT satisfies
Chaj| x¥® = 0, then the Finsler space is called a Landsberg space. A
Berwald space is characterized by Cj;;;x = 0. Berwald spaces are spe-
cially interesting and important, because the connection is linear, and
many examples of Berwald spaces have been known. On the other
hand, if a Finsler space is a Landsberg space and satisfies some addi-
tional conditions, then it is merely a Berwald space (3], [9]).

The purpose of the present paper is devoted to finding a Landsberg
space in a two-dimensional Finsler space F? with a special (o, 3)-metric
L(a, B) satisfying L? = c;0? + 2cpa8 + ¢332, where c1, co, c3 are non-
zero constants. First we determine the difference vector and the main
scalar of F? with L? = c;a? + 2c008 + ¢38%. Next we derive the
condition for F?2 with a special (o, §)-metric to be a Landsberg space.
Finally we show that if 2 with the above metric is a Landsberg space,
then it is a Berwald space.
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2. Preliminaries

Let F™* = (M™, L(a, ()) be an n-dimensional Finsler space with
an (a, B)-metric and R™ = (M™, a) the associated Riemannian space,
where a? = a;;(z)y'y?, B8 = bi(z)y'. In the following the Riemannian
metric o is not supposed to be positive-definite and we shall restrict
our discussions to a domain of (z,y), where 8 does not vanish. The
covariant differentiation in the Levi-Civita connection ;% (z) of R™ is
denoted by the semi-colon. Let us list the symbols here for the late
use:

— — N 1 U o
27‘1'3' = bi;j + bj;i, 2Sij = bi;j — bj;i, ri=a"Tr, S$;=0a Srj,
ri=brTi, 8 =0brsTs, b =4a""b,, b%=a"%bb,.

The Berwald connection BT = (G,%x, G*;) of F™ plays one of the
leading roles in the present paper. Denote by Bjik the difference tensor
([8]) of Gk from 7;* as follows:

Gi'k(z,y) = vk (2) + Bi'k(z, ).
With the subscript 0, transvection by 1°, we have
G'=v';+ B, 2G' =7’ + 2B,
and then Bij = (’%—Bi and Bjik = 8kBij. It is nqted that the Car-
tan connection also has the nonlinear connection G*; common to BT

Bi(z,y) is called the difference vector in the present paper.
Since BT is L-metrical, L(a, f3) satisfies

L = 8L —(0,L)G™; = 0 = Lia); + L2f3ys,
where (L1, Lo) = (0L/8c, OL/8B), and so
Lo
2.1 a; = —— 0.
(2.1) ! 7,7
It is observed that B3); = b,;y° = (bs;i — b,Bs":)y®, which implies

(2.2) Biy® = roo — 2b.B".
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For the scalar b? we have b?iyi = (0:b%)y* = b3y" = 27 (ryi + s )y,
which shows
(2.3) b|2iyi = 2(ro + so).
Next the quadratic form
7 = b2a® — B2 = (bPai; — bibj)y'y.
plays a role in the following. From the equations above it is easy to
show

(2.4) 'ylziyi = 2(ro + sp)a’® — 2 (%an + ,3) (roo — 2b,B").
1

The following Lemma has been shown as follows:

LEMMA 2.1. ([2], [5]) If @® = 0 (mod. ), that is, a;;(z)y'y’
contains b;(x)y* as a factor, then the dimension n is equal to two and
b? vanishes. In this case we have & = d;(z)y’ satisfying o = (36 and
d;b* = 2.

LEMMA 2.2. ([5]) We consider the two-dimensional case.

(1) If b2 # 0, then there exist a sign € = +1 and § = d;(x)y’ such
that a® = §2/b% + €62 and d;b* = 0.

(2) If b = 0, then there exists § = d;(z)y* such that o® = 36 and
d;b* = 2.

If there are two functions f(x) and g(x) satisfying fa? + g32 = 0,
then f = g = 0 is obvious, because f # 0 implies a contradition
of = (~g/f)B2

In the present paper we consider an n-dimensional Finsler space
with a special (@, §)-metric L(a, §) satisfying

(2.5) L2(a,ﬂ) =102 + 2c00f3 + c352,

where ¢1, ¢2 and c3 are non-zero constants. This metric was introduced
and studied in [10] as a generalization of the Randers metric for the
first time. If ¢jc3 — c3 = 0, then the metric is a Randers metric. We
shall deal with non-Randers space afterward. Therefore ¢;c3 — c3 # 0
must be assumed. The following has been shown in [10]as follows:

PROPOSITION 2.3. Let F™ be the Finsler space with a special (o, 3)-
metric L(a, 3) satisfying (2.5), Then F™ is a Berwald space, if and only
if bs;; = 0 is satisfied.
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3. The Landsberg space with a special (¢, 3)-metric

Let F* = (M™, L(e, B)) be an n-dimensional Finsler space with a
special (o, 3)-metric given by (2.5). By means of the method given in
[8], the difference vector of F™ is given by

1

(3.1) 2B' = E(TOO — 2aAsg)(ca Lyt + ha’bt) + 2a.As}h.

where Z = L%(cja+c208)+hay?, h = cies—c3, A = (cea+c3fB)/(cra+
c2B).

Before discussing our problem, we must consider the assumption
Z # 0, because Z appears in the denominator in (3.1). If Z = 0, then
we have

c%a3 + 3cicoa’B + 3c§a,82 + cpe3f + (cre3 — c%)bzcu3 =0,
which is written in the form Pa + @Q = 0, where
P= {C% + (c1c3 — c%)b2}a2 + 3C§ﬁ2a Q= ﬁ(36102a2 + 0263/32)-

Since P and @ are rational polynomials of (y*) and « is an irrational
function of (y*), we have P = 0 and @ = 0. These lead to ¢; =
¢ = ¢z = 0. This is a contradiction because c;, co, c3 are non zero
constants. Hence Z # 0 is a proper assumption all through.

It follows from (3.1) that

alcia + c2)?

(32) Too — 2b.rB = 7

(roo — 2aAsp).

Now we deal with the condition for a two-dimensional Finsler space
F? with (2.5) to be a Landsberg space. It is known that in the two-
dimensional case, a general Finsler space is a Landsberg space, if and

only if its main scalar I(z,y) satisfies I;;y* = 0 ([7]).
Owing to [6], the main scalar of F is obtained easily as follows:

9C2’72L8
) =2
(3.3) € 1073
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Substituting (2.2) and (3.2) in the transvection of (2.1) by y*, we have
(3.4) —Z'y2a|iyi = aAfy?(cla + czﬂ)z(roo —2aAsp).
Furthermore substitution of (2.5) and (3.2) in (2.4) leads to
y* =202 {(ro + s0)aZ

— (Ab?a + B)(cra + c28)% (100 — 2aAsp)}-

Making use of (2.1), (2.2), (2.4) and (3.2), we get
(3.6) . _
- 3a*y2Z|iy’
3h 2.2
= oé’y [{,BL2 + (caa + c3P)y? + 20(Ab%a + B)(crax + c208)}

aZ~i
(3.5) 5

(cra+ c28)(roo — 20Asg) — 202 (ro + so)Z].
The covariant differentiation of (3.3) leads to
9c3L8
VA
Substituting (3.4), (3.5) and (3.6) in (3.7), we have

2718
-

(3.7) 4a3Z3€I|2iyi = (aZ'yﬁ.yi - Z7v*auyt - 3072 Z1y").

4a2Z3€Il2iyi = 202 Z{(cra + c2B8)L? — 2hay*}(ro + o)

—(cra+ef)[Z(catef){AB*e® + B2 1 2008}

— 3ha*{BL? + (0 + c3B) (367 — B°)

+ 2(c1a + caB)af}|(ro0 — 2aso)]
Consequently, the two-dimensional Finsler space F? with (2.5) is a
Landsberg space, if and only if

(Aga® + A70" B + Aea®B? + Asa®B® + Asa?Bt + A3a®p°

+ A2026%) (o + s0) + (Bra” + Bga®B + Bsa®B% + Bya*p®
(3.8) + B3a®B* + Bya?0° + BraB® + By )roo + (Csa® + C7a™8

+ Cea®B® + Cs50°B° + Cia*B* + C3038° + Cra? 8°

+ Ciaf")so = 0,
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where
Ag = 2¢} — 2c3hb? — 4h2b*, A7 = 12c3cy — Beycohb?,
Ag = 6c2(cic3 + 4¢3) + 6(cica — 2¢2)hb?,
As = 2cica(11cics + 9¢2) — 2epc3hb?, Aq = 3Oclc§C3,
A3z = 6cacs(eres + c%), As = 2c§c§, B7 = —clcpb? + 8cieohb?,
Bs = —3ci + c(6crea — 11¢2)b? + 8(cyes + c2) kb,
Bs = ~11c3¢cy — 10c1¢3b° + 8cacshb?,

By = —~5c}(2cic3 + 3¢2) — 10c3c2b?,

B3 = —6cica(4cics + c3) — cacs(1lcyca — 6¢2)b2,
By = —20010503 - c§c§b2, B; = —cyes(cies + Gcg),
Bo = —c3c3, Cg = —2c2c3b? — 16c2hb*,

C7 = 4cSca — 10cica(crca — 263)b% — 32coc3hb?,

Ce = 2c2(c1c3 + 96%) — 4crea(3eycs — 8c2)b? — 160§hb4,

Cs = 2c1c2(19¢1¢3 + 6¢2) + 4caca(8eics — 3¢2)b2,

Ca = 20cica(cres + 2¢3) + 10c3(2cic3 — 2)b?,

C3 = 4eges(Teres + 3c3) + 2coc3b?, Co = 14ckc3, C) = 2cpcl.

Seperating (3.8) in the rational and the irrational terms of (y?), we
have

{(480® + A6a®B? + AsaB* + 420785 (ro + s0) + (Boa®B + Bya’*B?
+ Byo®(° + Bofi")roo + (Csa® + Ca®h? + Cua®B* + C3a?8%)s0 }
+ OL{(A7OLG,3 + A5Ot4ﬂ3 -+ Agazﬂs)(’!‘o + So) + (B7a6 + B5a4,82

+ Baa?B* + B18%roo + (Cra8B + CsaB® + C3a2 00 + 01/37)30}
=0,
which yields two equations as follows:
(Aga® + AgabB% + A0tpt + AgaQﬁG)(’ro + sp)
(3.9) + (Bga®B + Baa?3° + Baa®B° + BoB Jreo
+ (Cga® + Csab3? + Cua* B + Cra®8%)s0 = 0,
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(A7a8B + Asa*B3 + A3a®B%)(ro + sp)
(3.10) + (Bro® + Bsa*B® + B3a?8* + B18%)roo
+ (C7a®B + C5a*B3 + C3028° + C187)s0 = 0.

From (3.9) and (3.10) we obtain respectively

(3.11) Boﬂ77‘00 =0 (mod 042),

(3.12) B18%r00 + C18750 =0 (mod. o?).
From By # 0 (3.11) is reduced to

(3.11) Broo =0 (mod. a?).

In the following we shall denote the homogeneous polynomials in
(y*) of degree r by hp(r) for brevity. For instance, v = v;jxy’yiy* is
an hp(3). Then (3.11') is written as

B7roo = alus,
where u7 is an hp(7). From b% # 0 it follows that a®> # 0 (mod. B)

and there must exist a function f(z) such that u; = 87 f(z). Hence we
have

(3.11") roo = &2 f(x) ; rij = ai; f().

Then (3.12) is reduced to

(3.12') B7s0 =0 (mod. o?),

because of C; # 0. (3.12') shows that there exists an hp(6) ug satisfying
B7s0 = a?ug, which implies ug = 0, because aug can not contain 37
as a factor. Thus we have

(3.12") so=0; s =0.

It is obvious that (3.11") gives

(3.13) ro = Bf(x); r; = b f(z).
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Therefore (3.11) and (3.12) are reduced to (3.11”), (3.12") and (3.13),
and (3.9), (3.10) are reduced respectively to

f(z)[(As + Bg)a® + (Ag + By)a*B? + (A4 + Bo)a?p*

(314) + (A2 + By)B%) =0,

f(@)[Bra® + (A7 + Bs)a*B? + (As + Bs)a?6*
+ (43 + B1)8% = 0.
Let us assume f(z) # 0. Then (3.14) and (3.15) imply
(Az + Bo)B® = o®vy, (As+ B1)B° = oPuy,

where v4, wy are hp(4). Analogously to the above, these imply vy =
wy = 0. We have, however,

Az + Bo = (c2¢3)> #0, A3+ By = 5cieacl # 0.

Thus we arrive at a contradiction. Hence f(z) = 0 must hold and we
have rgo =0;7r;; =0and s=0; s; = 0.
If b2 = 0, then (3.9) and (3.10) are reduced to

(Dgo® + Dga®B% + Asa®Bt + A2a2,36)(7‘0 + s0)
(3.16) + (Esa®B + E40*B* + E20?B° + BoB")roo
+ (Fpa®(? + Fya*B* + Coa?85)s0 = 0,

(3.15)

(D70°B + Dsa*B® + A3a?B°)(ro + so)
(3.17) + (Esa*B® + Esa?B* + B18%)roo
+ (Fro®B + Fsa'B® + F3a?B° + C187)s0 = 0,
where
Dg = 2ct, D7 =12c3cy, Dg = 6c3(cics + 4cl),
Ds = 2cicp(1lcies + 9¢2), Eg = ~2c}, Es = —11c3cy,
E4 = —5c}(2c1c3 + 3c3), E3 = —6cica(deies + c2),
Ey = —20cic3cs, Fr = —dcicy, Fs = 2c3(cics+ 9¢c2),
F5 = 2¢1¢9(19¢1¢3 + 603), Fy = 20cic3(cie3 + 2c%),
F3 = dcaes(Tercs + 3¢3).
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Making use of Lemma 2.1, (3.16) and (3.17) are reduced to

B{(Deb® + 44828+ 4266)(r0 + 50)
(3.18)  + (E46% 4 E2d8 + ByB%)rog + (Fed® + E46°6 + Cz5ﬂ2)30}

+ {D864(r0 + s0) + E653’r‘()0} =0,

ﬁ{(D562 + A36B)(ro + s0) + (E36 + B1B)roo
(3.19)° + (F582 + F368 + 0252)30} .

+ {D763(r0 + 50) + Esd2rgp + F75350} = 0.
From (3.18) and (3.19) we have

8*{Dgé(ro + s0) + Eeroo} =0 (mod. g),
62{D78(ro + so) + Frdso + Esroo} =0 (mod. 8).

Since rg + s¢ = b2y /2 vanishes because of % = 0, the above equations
are written as follows:

(3.20) E¢6%rgo =0 (mod. 3),
(3.21) §*{E16s0 + Esro0} =0 (mod. B).

Because of Eg # 0, (3.20) is reduced to &3rgp = 0 (mod B). Then
there exists an hp(4) x4 such that

8roo = Bz
Since 6% = 0 (mod. B), there exists an hp(1) ) satisfying
(3.20") Top = AB; Ty = %()\ibj + Ajbi)-
Substituting (3.20’) in (3.21), there exists an hp(3) w3 such that

(3.21") 62(F76s0 + EsAB) = Bws.
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From 62 # 0 (mod. B) we have ws = ué? and Fydsg + Es)\B = pB,
where p is an hp(l), that is, F7spd = (1 — EsA)3. Therefore there
exists a function g(x) such that

(3.22) Frso = g(x) 0, u— Es = g(z)é,

which implies so = f(z)3, where f(z) = g(x)/F7. Substituting (3.20),
so = f(z)B and sg + ro = 0 in (3.18) and (3.19), we get respectively

(3.23) (E402 + E288 + BoB*)AB + (Fs8°8 + C206%) fB+ Eed®A = 0,

(3.24) (E36+ B1B)AB+ (Fs62+ F368+C18%) f B+ Es82 A+ E763 f = 0.

The term BoAB2 of (3.23) and the term B3 \32 +C; £33 of (3.24) seem-
ingly do not contain §, and hence we must have hp(3) X3 and hp(2)
Y, satisfying

BoA3® =6Xs,  BiM\G*+ C1fB° = 5pY,
respectively. Eliminating A from above the equations, we get
(3.25) C1BofB* = W3,

where W3 = BofY2 — B1 X3 is an hp(3), and hence W3 = 0, because
dW3 can not contain 8% as a factor. Since C; # 0, By # 0, we obtain
f = 0. Substituting f = 0 in (3.24), we have

M(E36 + B18)B + Es8°} = 0.

If X # 0, then we have B; 8% = —(E38 + B14)d, which implies E33 +
F56 = 0, because (E33 + B16)é can not contain 3% as a factor. Since
(8,6) are independant, we obtain E3 = Es = 0. This is contradictory
to E3 #0, E5 # 0. Hence A = 0. From (3.20’) and sp = f3 we have
roo = 0 and sg = 0 directly.

Summarizing up, we obtain rgop = 0 and sp = 0 in both cases of
b2 #£ 0 and b% = 0, that is,

(3'26) bi:j + bj:i =0, b"b,.; = 0.

Consequently, we have the following
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THEOREM 3.1. The necessary and sufficient condition for a two-
dimensional Finsler space F? with a special (o, 3)-metric L(a, 8) sat-
isfying (2.5) to be a Landsberg space is that b; is a Killing vector with
constant length.

Now we shall prove the following theorem.

THEOREM 3.2. Let F? be a two-dimensional Finsler space with a
special (a,)-metric L(a, 3) satisfying (2.5). If F? is a Landsberg
space, then F? is a Berwald space.

Proof. (3.26) of the two-dimensional case is written as
(3.26") b1;1 =0, beo=0, b2 =—bo;.

blbl;l + b2b2;1 = bzbz;l =0, blbl;z + bzbz;z = —blbz;l =0,

where (b!, %) of (3.26) is the contravariant component of (b1, bz). This
is nothing but b;;; = 0, ¢,j = 1,2, which coincides with the condition
for the space to be a Berwald space from Proposition 2.3. Thus the
proof is completed. O
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