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GLOBAL SHAPE OF FREE BOUNDARY
SATISFYING BERNOULLI TYPE BOUNDARY
CONDITION

JUNE-YUB LEE AND JIN KEUN SEO

ABSTRACT. We study a free boundary problem satisfying Bernoulli
type boundary condition along which the gradient of a piecewise
harmonic solution jumps zero to a given constant value. In such
problem, the free boundary splits the domain into two regions, the
zero set and the harmonic region. Our main interest is to identify
the global shape and the location of the zero set. In this paper, we
find the lower and the upper bound of the zero set. In a convex
domain, easier estimation of the upper bound and faster disk test
technique are given to find a rough shape of the zero set. Also a
simple proof on the convexity of zero set is given for a connected
zero set in a convex domain.

1. Introduction

Free boundary value problems occur in various physical and engineer-
ing systems. Last few decades, significant progresses have been made in
the area of local regularity of a free boundary by many researchers such
as H. Alt, L. Caffarelli, A. Friedman [2, 3, 4, 5, 7, 16]. In practice,
however, we met the problem of identifying the shape and the location
of a free-boundary. Much less result has been known about the global
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geometry of the zero set partially due to the strong non-linearity of the
free boundary.

A free boundary problem satisfying Bernoulli type boundary condi-
tion is our main subject in this paper. Suppose €2 is a bounded domain in
R? with C? boundary 89 and ¢, p are given positive constants. Consider
the following minimizing problem:

Minimize J,(w) := [, |[Vw[* — p?|{z € Q : w(z) = 0}]

Q
1) M, within the class K ={ue€ H(Q) : ulsa=c} .

A minimizer w, of the problem Mf} satisfies the following equations:
(See [8] by Friedman and Liu)

(2) w>0 in Q with wlee=c
(3) Aw=0 in {w>0}
(4) Vw*|® = 42 on 0GE, G :={zeQ:w,(z)=0}

where Vw* denotes the limits of Vw from outside of zero set G,,. Mf}
will be denoted by M,, and similarly Gf} by G, when the referring domain
is fixed and clear from the text for simplicity of the notation.

We are interested in identifying the shape of the free boundaries 8Gf}
for a given domain 2. Because of non-uniqueness of the free boundary
and extremely sensitive dependency to the global geometry of Q, it is
not easy to identify the explicit shape of the free boundary. So, our aim
is to extract some reduced information of the free boundary such as size,
rough location, and upper/lower bound of the zero set G,,.

In our recent papers [10, 14], we investigated the global shape of two-
phase free boundary and some techniques can be similarly applied and
extended to our one-phase problem. In Section 2, we give such exten-
sions. For example, Lemma 2.1 shows that the Lebesque measure of
G, strictly increases for p bigger than a critical value @l A practi-
cal method to guess approximate shape of two-phase free boundary, so
called test-disk technique, can also be applied in Lemma 2.4. And us-
ing this new technique we have the following monotonicity properties in
Theorem 2.5. If B,, and By, are two disks with B,,, C 2 C Byy,

By, Q B
G,rCG,CGM

where Gfm and GfM be the zero set, which can be evaluated explicitly,
corresponding to the problem Mfm and MEM , respectively. Also the
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zero set G, of M is characterized by two shrunk sub-domains Q,,, Q,,
in Corollary 2.7

Q,, CG,C A,
where Q, := {z € Q : distance(z, 0Q) > p} and p;, p can be explicitly
computed .

Due to the extreme sensitivity of the zero set G, to the domain (2,
there are many counter intuitive examples in non-convex domain. How-
ever, if we restrict ourselves in the case of convex domain €2, it is possible
to draw more results on the zero set G, which is our main interest in
Section 3. Although Corollary 2.7 provides upper bound of G,, Theo-
rem 3.1 provides a simpler way to get a rough estimation on the upper
bound of the zero set G,

Gﬂ c [
without solving sequence of solutions of Laplace equations. Theorem 3.4
gives properties of a convex extension G* of the zero set G as follows:

9G] _ Joc]
(I (e
therefore, connectedness of G implies convexity of G. Finally, Theo-

rem 3.5 extends the test disk technique in the case of convex Q and
reduces the number of trying test-disks.

either G =G*

2. One phase free boundary

Let w, be any minimizer among many possible minimizers of M, and
G, be the corresponding zero set. It is easy to see that Gy = 0, Goo = 1,
and

Ju(w,) < J,(w=1)=0.
LEMMA 2.1. If i1y < o, then

T (1) — J (pi2)
5 G| < B2 <G
(5) |G g |Gl
where J(p) = J,(w,) is independent of the choice of w,. Moreover,

there is a positive constant py = p > 2 ﬁ so that

G =0ifp<
(6) G“_{Gu#(?)ifp>p0.
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Proof.  Since w,, and w,, are minimizers of M, and M,,, respec-
tively,

(7) S (W) < Jy(wy) = Jﬂz(wﬂz)+(ﬂ2 N%),G,uzh
(8) Juo(Wp) < Ty (wyy) = Ty (wy,) — ( N%)lel-

These inequalities give the lower and the upper bounds of Jui(w,,) —
Jun(wy,) in (5) which states that G, is non-decreasing with respect to .
Although |G| depends on choice of minimizer, |G} is non-decreasing
and may have jumps only on countably many points. Therefore,

(©) 70 = gw,) = = [ 276,

is well-defined and independent of minimizer. Also, J(u) is Lipschitz
continuous and non-increasing with respect to u, J(u) = 0 — —oo as
p=0— oo.

Let yo = inf{p > 0 : J(u) < 0}, then G, # O for u > py and
J(po) = 0 for p < po. Since Jy(u = ¢) = 0, wy, = c is a minimizer of
M, with G, = 0. So it follows from (5) that G, = 0 for u < po. In
order to estimate the lower bound of yg, recall the definition of minimizer
J in (1) and the fact that [Vw}| = p on 8G, (4),

10)  Jyw) = [ [Vw,] = 21G,) = u(9G,] ~ wiGl) <0

"

Therefore, if G, # 0, i'lF)GGI < p. A disk has the minimum perimeter

to area ratio 2,/-Z- among all closed region in R? with fixed area.
Therefore, if G, # 0,

(11) > IG \/;ﬂ\/g

This ends the proof of (6). O

LEMMA 2.2. Let Q2 be a disk B, with radius a. Then

0, p<pb
12 G, = ) 9
(12) # {Bm m> et

where the radius n = 1% of zero set B, satisfies (nlog ¢ ) =p>pg =
2f
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Proof.  As in [10], we can derive w,(z) is radial, that is, w,(z) =
wy(|z]). Hence G, is a disk or a empty set. Suppose that G, is a disk
of radius 7 > 0. It follows from direct computation that

loglz|/n .
(13) wy(z) = Toga/n ifn<lz|<a

and the radius 7 is choose to minimize the energy functional (1),

. 2 2 9 2 9 o
J(/.L) = inf = <l /S s ) =T <l / mn 0

O<s<a

For sufficiently large p, J(p) has two critical values when

1
(14) nloga/n = P
and the larger radius 7 gives the minimum value
I 1
1 = 2— <
(1%) J(8) loga/n ( loga/n) =9

Since J(u) < 0 implies > T the lower bound of i to make non-empty
zero set is given as follows

(16) ve

_ e
w=(nloga/n)” >2%= = yg".
This completes the proof. O

REMARK. When Q is a disk of radius a and py = 2%, both w =1
and w = 2(log L + %)X{r>ﬁ} have the same minimum J(pg) = 0 for the
problem M, . This tells us that there are two different minimizers when
B = Ho-

Since a minimizer w, satisfies the Laplace equation (3) in 2\ G, it
gives important information to investigate the harmonic function defined
in @\ D. Solving this forward problem with given zero set D is much
easier than finding the zero set G, of the inverse problem M,. Our
goal is to estimate G, by solving a sequence of the forward problems
numerically.

DEFINITION 2.3. Let A} be the solution of the following Dirichlet
problem in Q\ D,

ARZ =0 in Q\D
Rlop =0, hflee = 1.
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The harmonic function A$} is simply written as hp if the domain € is
implicitly known in the context and hp sometimes denotes a function
extended to the whole domain Q with hp(z)|p = 0.

Suppose D; and D, are subdomains of Q with D; C D,, then it
follows from the maximum principles and the Hopf’s lemma that

(17) |Vhp,| > |Vhp,] on 9%
(18) ,Vhpzl S ,Vthl on 8D1 ﬁaDz

The following lemma states a test disk technique which checks if a
test disk is a subset of G,. A similar result was introduced first in
our previous paper [14] which dealt with two-phase free boundary value
problem, however, we include the sketch of the proof again, for the sake
of clarity.

LEMMA 2.4 (Test Disk Technique). Suppose an open disk B in {2 and
the corresponding harmonic function hg satisfy the following radius and
gradient conditions

(19) L?lf—l, <u and |Vhg| < pondB.
Then, the test ball B is a subset of G,
(20) B cG,.

Proof. Let G* := BUG and assume E = B\ G # 0. Since |Vhg| = p
on 0G and |Vhg| < pon 0B, |Vhg:| < p on G* by (18). A simple
computation like (10) gives

J(he:) < woG*| - p?|G"|
= uloG| - |G| + pl
where I = |0B\G|—[0GNB|—p|E|. Without loss of generality, we may

assume that OB \ G has only one connected component, otherwise we
can sum up the total I by adding I for each connected arc segments. Let
I'; be a connected arc in @B\ G and E; be the corresponding connected

component of E near I'y. It is possible to prove that
Il = ‘FII — IBEl M Bl — /L'Elf <0

using polar coordinate on OF;. We omit detailed proof since a similar
computation has been given in our previous paper [14]. The fact that
I < I, < 0 under the assumption E # () draws a contradiction to hg is
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a minimizer of M since J(h¢) < J(hg) + pl. Therefore, E = @ and
B cCG,. O

REMARK. The zero set G, = B, of Mf“, W > o satisfies the radius

condition (19) in the test disk technique
2 a

%=5=2ulogﬁﬁu, for p > po.
For p1 = g, By, is the only disk satisfying the radius condition (19). As
¢ becomes larger, |G| is getting bigger and smaller test disks can be
used, which makes the technique more easily applicable.

It is natural to ask if there is a simple relationship between Q2 and Gf}
for fixed p. For Q; C €2y, it is easy to see that

Q) =
(22) J (w,t) = Jl?z(wf} ) > J&(wf}?)

where u"Jf}l is an extension of wﬁ‘ and defined to be 1 in 5 \ ©;. Since
Jf}(wﬁ) =0 for p = ,ug,

(23) pet > pg.

(21)

One might ask if -a statement that Gf}l - Gf}2 is true or not. The next
theorem gives a partial result about this conjecture.

THEOREM 2.5 (Disk Inclusion). Suppose 2 is bounded by two disks
B,,, By of radius m, M which may not be concentric,

(24) B, C QC By

Then, the zero set G, of the minimization problem Mf} for p > p is
bounded by two zero sets of B,, and By,

(25) Girc G, c Gbn
where Gf'", GEM are given explicitly in (12).
Proof. By maximum principle for two harmonic functions in B, \
G5
b .
Q Bm 1 ~Bp,
hgn < hg 0 B\ G,
Therefore,
|thgm[ < IVhB’" |=p on BGf’".
m

Gam
Since the zero set G5 satisfies the radius condition (21), it follows from
the test disk technique that Gf’" C G,.
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Now we will prove G, C GP#. Since GE¥ = By D Q and G is
continuously increasing with respect to A > /1(1)3 M
(26) p* = inf{\: G} c G}
is well-defined. Suppose p* = /.LOBM , then p > pf > p* which proves
G’f} C Gf;M C GEM. Now, we need to check the case of u* > pf™. In

such case, aGf.M touches BGf}. Let P be a contact point and let us
compare the minimizers wf.“ and wf} in Q\ GE.M .

(27) O=w < wp oOGEH

(28) wp¥ < wl=1 89

Therefore, wf.“ < 'wf} by maximum principle, and Hopf’s lemma gives
(29) IVwB*(P)| = p* < |Vuwl(P)| = p.

And it proves that Gf} C Gf,M C GEM . 0

To improve the above theorem a little bit, let us define C%-character
and a concept of shrunk domain , for a given domain Q.

DEFINITION 2.6. Q is called C?-domain with C2-character L if
(30) radius(D,) > L for all z € 99

where D, is an inscribed disk in §2 contacting 00 at z. We also define a
shrunk domain

(31) Q, = {z € Q : distance(z, 9Q) > p}.

COROLLARY 2.7. Let ) be a domain with C?-character L. For y >
pet = %E, the zero set G, of M is characterized by two shrunk sub-

domains Q,,, Q,, as follows:

(32) Q,, CG,C A,

where p; = L —nt = L —radius(G5") and p; = inf{p > 0 (ir_)léf |Vhe,| <
7

pu}.

Proof. From Theorem 2.5, the zero set G, must contain a concentric
subdisk with radius 775 of the inscribing tangent disk D, with radius
L at ¢ € 09. If we can apply these along the boundary 092, we could
conclude that the set Q7 \Q L+y; is contained in the set G,,. Hence, the
maximum principle and the test disk technique proves that 2 Lt € G,
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Now we prove the upper bound. Let P is a point on G nearest to
the boundary of the domain O so that p = dist(P,09) = dist(0G, 0%Q).
Then |[VA(P)| = p. Note |Vh,(P)| < ¢ by maximum principle.

(33) inf Vuw,| <p = p>p
Therefore, G C 2, C £1,,. O

3. Convex Domains

Our main concern in this section is the shape of the zero set G, under
the assumption that the given domain © is convex. In [9], Henrot and
Shahgholian proved that the zero set G, in two dimensional domain Q
is convex provided it is connected with finite perimeter, however, the
connectivity of G, is not known yet. When the domain (2 is steiner
symmetric, we can use Serrin’s moving plane method to get some sym-
metry for the zero set G,. For example, if 2 is steiner symmetric with
respect to z- and y-axis, so does the zero set G, therefore, G, is convex
and connected. However, as far as we know, the convexity of G, for
general convex domain Q C R™(n > 2)is still missing. And in many
practical situation, it is sometimes more interesting to estimate approx-
imate shape of G, instead of convexity. The purpose of this section is
to get some partial information for approximate shape and location of
the zero set G, and we shall assume p > po, that is, G, is a non-empty
set throughout this section.

Although Corollary 2.7 provides upper bound of G, using the har-
monic function hq,, it requires to solve the Laplace equation in Q\Q,.
The following theorem provides a rough estimation on the upper bound
of the zero set G, without any further computation.

THEOREM 3.1. For p > uf}, the zero set G, ofMﬁ is subset of §y,,
(34) Gy C Qe

Proof. Let p be the largest positive number with G, C Q,. Pick a
point zo € 2, N OG and define a strip

S :={z]0 < (z —z,v(z0)) <p}

where v(zp) is the outward unit normal vector at 2o € 9Q and (A, B) is
the inner product of the vectors A and B. Since {2 and (1, are convex,
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QNS #0and Q,NS = 0. Let h(z) be a linear(harmonic) function
defined in QNS

h(z) == %(x — xg, v(x9)).

Let us compare h(z) with the minimizer w = w}} of M. Since h < w
on (SNN), h < w in SNQ by the maximum principle for the harmonic
functions w and h. Then it follows from Hopf boundary point lemma

that )
r [Vh(zo)| < [Vw(zo)| = p.

This completes the proof. O

The following lemma gives us a useful tool to estimate the gradient
of a harmonic function. Let us consider a domain defined by two level
curves of a harmonic function. In such case, it is possible to estimate
the gradient of the harmonic function at the critical points of a level
curve using a similar strip introduced in the previous theorem. This
idea comes from the result of Henrot and Shahgholian [9)].

LEMMA 3.2. For ¢ € C?|—1,1] with ¢(1) = ¢(—=1) = 0, let D be a
simply connected bounded domain defined by

D = {(z1,29): —1<z1<1,0 <z < @(z1)}
Suppose that a harmonic function u in D has (i) positive constant bound-
ary value along {(z1,¢(z1)) : —1 < |z1| < 1} and (ii) its minimal value
at ¢~ := (z7,0). Then,
V()] 2 [Vu(z")]

where z* = (z7, ¢(x})) and z} is any critical points of ¢.

Proof. We may assume |Vu(z*)| = 1 without loss of generality. For
each 0 < s < 1, define vs(zy,29) = swa — u(x1,22) in D. Then v has a
maximum at either 2~ or z* in the region D N {z; < ¢(x;)}. Suppose v
has a maximum at z*, then

ov () = s Ou

—{x = PR

6.’132 81132
which is a contradiction. Hence v must have a maximum at z~. By
Hopf lemma,

(z')=s—-1<0

ov ou , _
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Since the above inequality is true for all 0 < s < 1, |Vu(z™)| > 1. This
completes the proof. |

COROLLARY 3.3. Let Fy, F,,---, Fy be subsets in a convex domain
Q and
|Vhg| < p on OF,, forall i=1,.--N.
Then the gradient of the harmonic function for the convex hull F of
I, F,, .-, Fy satisfies

|Vhe| < pin Q\ F.

Proof. 1t was known from J. Lewis [13] that a level curve of hp is
convex. Moreover, it follows from the maximum principle that |Vhg| <
pon dF N(OF U ---UJFy). Thus,

[Vhp|<p in Q\ F
using Lemma 3.2. |

Before further discussion on the properties of zero set G, let us in-
troduce a new concept which extends the idea of convex hull. Convex
extension of a set is an extension of the original set with disjoint union
of the convex hulls of its component or some components. For example,
two possible convex extensions of a set with two components are the
union of the convex hulls of each components and the convex hull of
both components.

THEOREM 3.4. If G* be a convex extension of the zero set G for Mﬂ
in a convex domain (Q, then
16G| _ |9G"|
Gl G
Therefore, if G is connected which implies If’GC'I'I > 'fGG l|’ then G* = G,
that is, G is convex.

(35) either G* =G

Suppose G* # G and ',G, < I{"’—G". Since |Vhg«| < p by Corollary 3.3,

02w = [ [Vul -6 - mcl('fg" u)
oG*

> ulel (N5 - u) > woe - i

> / [Vhe > — 12IG"| = J(he)
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which contradict to the fact that w is a minimizer of Mf}

The test disk technique stated in Lemma 2.4 is useful tool to guess
approximate shape of the zero set by applying disks on the domain.
In the case where Q2 is convex, the number of trying test-disks on the
domain 2 can be reduced significantly by the following theorem.

THEOREM 3.5. Let By, By, ..., By be disks in a convex domain €} sat-
isfying two test conditions for M® in Theorem 2.4. Then the zero set
contains the convex hull of the test disks,

(36) Convez hull (UY,B;) C G,.
Proof. Let F be the convex hull of the test disks. Then |Vhp| <
g in Q\ F using Corollary 3.3. Let £ = G, U F then
|Vhg| < pon 0

since |Vw| < pon 0G, and |Vhp| < pon 0F. Comparing two harmonic
functions w and hg, we get

wuw) = [ 1Vul=i2IG,] = (156 - kiG)
< Ju(hs) < p(OF| — ulE)).

Therefore,
(37) I:=[0E| - |0G,| - u(|E| = |Gyu]) 2 0.

We want to prove that G, = E. Suppose not. Let P, € 0F \ G, It
follows from the construction of F that there is a tangent disk B of

OF at P, so that BP € F and %B,f:—‘ll < p. Let E; = BR2UG,. From the
proof of theorem 2.4, we obtain
0B — ulEA| < 19G,| — ulG.

Next, pick P, € OE\ E; if exist and denote again by B*? the correspond-
ing tangent disk at P;. If Ey = BP U G,,, then, as before,

|OEs| — p|Ea| < |0E:| — plEyl.
We can choose a sequence in such a way that E, C Fs.... C B, — E.
(When E; = E, stop the process.) Since a; = [0Ey| — p|Eg| is strictly
decreasing sequence,

|0E| — plE| < |0Gyu| — plGul.
which contradict to (37). This completes the proof. a
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