Molecular Phylogeny of Poecilostome Copepods Based on the 18S rDNA Sequences

  • Kim, Jihee (School of Biological Sciences, College of Natural Sciences, Seoul National University) ;
  • Kim, Won (School of Biological Sciences, College of Natural Sciences, Seoul National University)
  • Published : 2000.09.01

Abstract

To elucidate phylogenetic relationships among poecilostome families 18S rDNA sequence data were generated for seven poecilostome and one cyclopoid copopods by PCR cloning and sequencing techmiques. Phylogenetic trees were constructed by maximum parsimony, neighbor joining, and maximum likelihood methods using cyclopoid sequence as an outgroup. The results from three different analyses showed that the seven poecilostome families were eiridel into two groups: Clausidiidae-Myicolidae-Synaptiphillidae-bomolochidae and Lichomologidae-Chondracanthidae-Ergasilidae. The molecular phylogenies were consistent with those from the morphological characters. Therefore, these analyses porvide further evidence for the utility of 18S rDNA sequences in addressing phylogenetic relationships among poecilostome families.

Keywords

References

  1. Abele LG, Spears T, Kim W, and Applegate M (1992) Phylogeny of selected maxillopodan and other crustacean taxa based on 18S ribosomal nucleotide sequences: a preliminary analysis. Acta Zool 73: 373-382
  2. Appels R and Honeycutt RL (1986) rDNA evolution over a billion years. In: Dutta SK (ed) , DNA Systematics, CRC Press, Boca Raton, pp 81-135
  3. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raft RA, and Lake JA (1997) Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387: 489-493 https://doi.org/10.1038/387489a0
  4. Avdeev GV (1978) Systematic position of the genus, Tegobomoloch us Izawa, 1976 (Copepoda, Cyclopoida). Izv Tinro 1 02: 112-119
  5. Black WC, Klompen SH, and Keirans JE (1997) Phylogenetic relationships among tick subfamilies (Ixodida: Ixodidae: Argasidae) based on the 18S nuclear rDNA gene. Mol Phylogenet Evol 7: 129-144 https://doi.org/10.1006/mpev.1996.0382
  6. Dojiri M and Cressey RF (1987) Revision of the Taeniacanthidae (Copepoda: Poecilostomatoida) parasitic on fishes and sea urchins. Smiths Gontr Zool 447: 1-250
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  8. Field KG, Olsen GJ, Lane DJ, Giovannoi ST, Cheselin MT, Raff EC, Pace NR, and Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239: 748-753 https://doi.org/10.1126/science.3277277
  9. Friedlander TP, Regier JC, and Mitter C (1992) Nuclear gene sequences for higher level phylogenetic analysis: 14 promising candidates. Syst BioI 41: 483-490 https://doi.org/10.2307/2992589
  10. Friedlander TP, Regier JC, and Mitter C (1994) Phylogenetic information content of five nuclear gene sequences in animals; initial assessment of character sets from concordance and divergence studies. Syst BioI 43: 511-525 https://doi.org/10.2307/2413549
  11. Gooding RU (1963) External Morphology and Classification of Marine Poecilostome Copepods Belonging to the Families Clausiddidae, Clausiidae, Nereicolidae, Eunicicolidae, Synaptiphilidae, Catiniidae, Anomopsyllidae, and Echiurophilidae. Ph. D. Dissertation, University of Washington, Seatle pp 1-242
  12. Gotto RV (1979) The association of copepods with marine invertebrates. Ad Mar Biol 16: 1-109
  13. Graybeal A (1994) Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Syst BioI 43: 174-193 https://doi.org/10.2307/2413460
  14. Halanych KM (1996) Testing hypotheses of Chaetognath origins: long branches revealed by 18S ribosomal DNA. Syst BioI 45: 223-246 https://doi.org/10.2307/2413616
  15. Hasegawa M, Kishino H, and Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 21: 160-174 https://doi.org/10.1007/BF02101694
  16. Hillis OM and Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev BioI 66: 411-453 https://doi.org/10.1086/417338
  17. Ho JS (1984) New family of poecilostomatoid copepods (Spiophanicolidae) parasitic on polychaetes from southern California, with a phylogenetic analysis of nereicoliform families. J Crust BioI 4: 134-146 https://doi.org/10.2307/1547902
  18. Ho JS (1991) Phylogeny of Poecilostomatoida: a major order of symbiotre copepods. Bull Plankton Soc Jpn Spc Vol: 25-48
  19. Humes AG and Boxshall GA (1996) A revision of the IichomoIgoid complex (Copepoda: Poecilostomatoida), with the recognition of six new families. J Nat Hist 30: 175-q227 https://doi.org/10.1080/00222939600771131
  20. Huys Rand Boxshall GA (1991) Copepod Evolution. The Ray Society, London
  21. Izawa K (1987) Studies on the phylogenetic implications of ontogenetic features in the poecilostome nauplii (Copepoda: Cyclopoida). Publ Seta Mar BioI Lab 32: 151-217
  22. Kim W and Abele LG (1990) Molecular phylogeny of selected decapod crustaceans based on 18S rRNA nucleotide sequences. J Crust BioI 10: 1-13 https://doi.org/10.2307/1548664
  23. Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120 https://doi.org/10.1007/BF01731581
  24. Mindell DP and Honeycutt RL (1990) Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu Rev Ecol Syst 21: 541-566 https://doi.org/10.1146/annurev.es.21.110190.002545
  25. Moon SY, Min GS, Kim SH, and Kim W (1994) Sequence of the 18S ribosomal RNA-encoding gene of the crustacean Philyra pisum: longer sequences of decapods in the V9 region. Gene 149: 379-380 https://doi.org/10.1016/0378-1119(94)90182-1
  26. Moon SY, Kim CB, Gelder SR, and Kim W (1996) Phylogenetic positions of the aberrant branchiobdellidans and aphanoneurans within the Annelida as derived from 18S ribosomal RNA gene sequences. Hydrobiology 324: 229-236 https://doi.org/10.1007/BF00016395
  27. Olsen GJ and Woese CR (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7: 113-123
  28. Patterson C (1982) Morphology and interrelationships of primitive actinopterygian fishes. Am Zool 22: 241-259 https://doi.org/10.1093/icb/22.2.241
  29. Panchen AL and Smithson TR (1987) Character diagnosis, fossils and the origin of tetrapods. BioI Rev 62: 341-438
  30. Saitou N and Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol BioI Evol 4: 406-425
  31. Sam brook J, Fritsch EF, and Maniatis T (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York
  32. Sanger F, Nicklen S, and Coulson AR (1977) DNA sequencing with chain-terminating inhibitor. Proc Natl Acad Sci USA 74: 5463-5467 https://doi.org/10.1073/pnas.74.12.5463
  33. Sogin ML, Elwood HJ, and Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83: 1383-1387 https://doi.org/10.1073/pnas.83.5.1383
  34. Spears T, Abele LG, and Kim W (1992) The unity of the Brachyura: aphylogenetic study based on rRNA and rONA sequences. Syst BioI 41 :446-451
  35. Spears T, Abele LG, and Applegate MA (1994) Phylogenetic study of cirripedes and selected relatives (Thecostraca) based on 18S rDNA sequence analysis. J Crust BioI 14: 641-656 https://doi.org/10.2307/1548858
  36. Thompson JD, Higgins DG, and Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  37. Vogler AP, Welsh A, and Hancock JM (1997) Phylogenetic analysis of slippage-like sequence variation in the V4 rRNA expansion segment in tiger beetles (Cicindelidae). Mol Biol Evol14: 6-19
  38. Wen J and Zimmer EZ (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from its sequences of nuclear ribosomal DNA. Mol Phylagent Evol 6: 167-177 https://doi.org/10.1006/mpev.1996.0069