(&)

St EOICI O OIX] Al4H K22 20004 68

HDIMI: Heterogeneous Distributed Multimedia
Information Management for QoS-Sensitive
C*l Applications in the Global Infosphere

Wonjun Lee* - Jaideep Srivastava** - James Richardson***

1. INTRODUCTION

The Heterogeneous Distributed Information
Management for the Infosphere (HDIMI) proj-
ect is conducting research and development in
information management technology to support
many operational objectives. The University of
Minnesota and Honeywell Technology Center
have conducted the HDIMI project under Rome
Laboratory (now U.S. Air Force Research Lab-
oratory) sponsorship. The objectives of the
HDIMI project have their origin in C'T for the
Warrior [9]. That document stated the impor-
tance of providing individual warriors, whatever
their role, with relevant and timely information
from the global Infosphere. More recently, DoD's
Joint Vision 2010 [2] has emphasized the key
role of information superiority in achieving
military success. Information superiority leads

to enhanced battle space awareness (understand-

This work is funded by U.S. Air Force contract number

F30602-96-C-0130.
*Computer Science Telecommunications, University
of Missouri - Kansas City, USA

**Department of Computer Science & Engineering,
University of Minnesota, USA

***Honeywell Technology Center, USA

ing of the current military situation) and speed
of command (ability to plan and execute opera-
tions to meet objectives and to adapt to chang-
ing situations). The rest of the paper is organ-
ized as follows: In Section 2, we describe the
background and objectives of the HDIMI proj-
ect. Section 3 illustrates the technical ap-
proaches of HDIMI. In Section 4, we present the
accomplishments of this project, and concluding
remarks and future work description will follow

in Section 5.

Figure 1. Warriors need relevant and timely
information fromthe global Infosphere

2. PROJECT BACKGROUND AND
OBJECTIVES

The HDIMI project is a successor to the

._24_

HDIM: Heterogeneaus Distributed Multimedia Information Management for QoS-Sensitive C' Applications in the Global Infosphere St EJ O[] 01381 X| R4 |23 2000 6%

Multimedia Database Management System project
conducted in 1993~1996 under Rome Laboratory
sponsorship. That project focused on system
services and tools to support continuous media
(audio, video) in time-critical C'I applications.
Significant accomplishments in that project

included:

® A block-based programming model and
graphical tool for dynamic construction of
complete continuous media applications.

e A multi-resource run-time scheduling com-
ponent that ensured continued execution of
critical applications when system resources
are tight, while allowing others to operate
with reduced quality of service [15].

e A high-performance multimedia file system.

All of these capabilities were implemented in
a Solaris-based system called Presto. Presto
was subsequently extended to a distributed
environment under a DARPA-sponsored project,
High Performance Network Services [1]. This
distributed environment was the starting point
for the HDIMI project. We developed extensions
to Presto’'s data-flow oriented, block-based
programming model to support operation flows
in addition to data flow, and to handle aperiodic
flows in addition to periodic flows. These changes
were necessary to implement Active View
services, and moved the range of applications
well beyond the continuous media applications
that Presto supported.

That is, the HDIMI project has taken many
of the concepts embodied in Presto and gener-

alized them to address information management

requirements implicit in c'r for the Warrior and
Joint Vision 2010. Specifically, the HDIMI proj-
ect objectives are to “investigate, develop, and
demonstrate techniques for meeting c'r system

application requirements:

& A wide variety of information, including
conventional data types and continuous
media, stored in a collection of heterogeneous
data sources in a distributed environment

® A means for each application to defines its
‘window on the world and to specify
policies on how closely the window must
be kept in synch with the global Infosphere

® The operation and coexistence of QoS-
sensitive C'I applications and other c
applications

® Quick and easy prototyping of C'I applica-

tions

—~within the framework of an overall layered
system architecture.”
Significant requirements beyond the capabilities

of Presto include:

e Support for data types that lack a time
dimension, e.g. text, images, and conven-
tional database structures. (Presto only
supported continuous media.)

& Ability to define a “window on the world”,
i.e. an application- or user-specific Active
View of the global Infosphere. (Presto
supported development of stand-alone con-
tinuous media applications. It did not sup-
port multiple concurrent accesses to shared

databases.)

25

HDIM!: Hetergeneous Distrbuted Mulfimedia Information Management for QoS-Sensitive G Apglications in the Global Infosphere BIRYEIDICO{EIO)A Rl4E K28 20004 68

¢ More general notions of Quality of Service

for these views. (Presto supported QoS

measures specific to continuous media.)

e Distributed multi-resource management.

(Presto supported CPU and memory resource

management on a single node only.)

3. TECHNICAL APPROACH

The evolution of the Presto system to ac-

commodate the new requirements is called Sonata.

The Sonata reference architecture (Figure 2)

has evolved from Presto to align with the Joint
Task Force Architecture Specification (JTFAS)
being developed under DARPA sponsorship [25].

The functional components comprising the archi-

tecture fall into five categories:

22

4 Demonstraion Applicatins l

Multimedia Database Management System

project and require no significant revision.

® Revised Presto components are those that

were initially developed in the Multimedia
Database Management System project and
need substantial extensions in the HDIMI

project.

o New Sonata components are being developed

from scratch under the HDIMI project.

e Future work, such as C'I applications, can

be developed by a follow-on project after
successful execution of the proposed HDIMI

project.

At the outset of the HDIMI project, we

proposed to develop the following six major

capabilities. Actual accomplishments are listed

in the next section.

j Wi
Agpocaton ///////////////////

Tool Progra
N mmng
\‘N // \\\\\\\\\\\\\\\\\\\\\ ot

~— Run-Tims

7

NE""

\\\\\\\\\\\\\\\\\\\\\k\

V Geirigad Oriac- Sreeiad Sruarn wsraes ﬂ

Mamwy Runm MT e
F\h uamw

. . Commerzal (Rea-Time} Oparaing Systom
. (POSIX Standards or Windowa NT)

III
-- mgwn
!

[T e [corsmmrms

_.

Revised Presto 7 New Sonsta
‘componants componants

O
work

Figure 2. Sonata Reference Architecture

o COTS components are commercially

available hardware and software products.

® Presto components were built during the

26

® Active view management—We will develop

Active View capabilities for the multi-
media infosphere. This component consists
of a declarative view specification model
and language, and algorithms that map the
views specified in the language to a
data—flow-oriented, function-block-based
program for execution.

Block-based programming infrastructure—
Supporting the Active View management,
this component consists of a block-based
programming interface and view execution
mechanisms. The block-based programming
model (and an associated program devel-
opment tool) was designed and prototyped

in the Multimedia Database Management

HDIMI: Heterogensous Distributed Mutimedia Information Management for QoS-Sensitive 'l Appfications in the Global Infosphere Bt=HEIOICIO{2tBIX} H4A K23 20002 68

System project. We will enhance this model
with the capabilities of operation flow sup-
port and distributed, location-transparent
view definition and execution.

e Application development tools—We will
extend the visual program development
tool prototyped in the Multimedia Database
Management System project to support
Active View specification in addition to
application construction. Further, we will
develop a user interface tool to facilitate
construction of user interfaces for different
applications, and a program analysis tool.

o Multimedia object management—We will
develop capabilities of heterogeneous data
type management and content-based query
for the multimedia infosphere. We propose
to prototype this component using a com-
mercial database management system.

e Distributed resource management—This
is an extension of the Presto work. We will
investigate and develop distributed sched-
uling techniques to support the Active View
capability. This component will be built on
top of POSIX-compliant commercial oper-
ating systems.

o Application Demonstration—This indicates
various demonstration application software
components to be built in the system
environment. We will develop a set of
software components in the context of a
DoD demonstration to illustrate the capa-
bilities of all the system components de-

scribed above.

4. ACCOMPLISHMENTS

We substantially accomplished the HDIMI
project objectives, as summarized below. Sub-
sequent sections of this paper provide further

details.

4.1 Active View Management

We defined Active View services, which
involve three major concepts: view, change
notification, and history. We have implemented
the view and change notification concepts in
multiple distributed demonstration applications.
The service definitions have proved remarkably
robust over time. Active View is an object-
oriented framework for distributed monitoring
and control applications. This is a broad class
of applications that includes, for example,
military command, control, communications and

computing (C') and industrial process control.

Figure 3. Example Distributed cH Application

Figure 3 shows an example distributed ch

application. In this case, the map server, aircraft

27

HDIM: Heterogeneous Distributed Mukimedia Information Management for QoS-Sensitive C'l Applcations in the Giobal Infosphere SESIE| DT BIIX| R4 R[22 20004 6%

tracking, and target information are dynamic
sources of information. Different parts of the
organization are interested in different subsets
of the aggregate information. For example, the
strategic command is interested in target
reconnaissance videos, and various views of the
targets to help plan missions. The tactical
command is interested in the status of current
missions, and their feasibility, both in terms of
resources, and timeliness. Having up-to-date
information is crucial for good decision making
in either scenario. As this example illustrates,
this framework has some special needs. First,
changes in the situation being monitored must
be propagated to the end user/application with
appropriate timeliness and information quality
guarantees. Second, a wide range of data types,
including continuous media like audio and video,
and others like text, images and records, must
be managed. Finally, there is the requirement
to use commercial object-oriented technologies

as much as possible.

4.2 Block-Based Programming Infrastructure

It has been observed that the current pro-
gramming paradigm for developing multimedia
software needs some improvement [17,26). Presto
used a data—flow oriented, block-based program-
ming model and execution environment for con-
tinuous media applications. The model is based
on a data flow programming approach to facil-
itate construction of continuous multimedia
applications. A multimedia application is visual-

ized as a directed graph, wherein the nodes

represent common generic multimedia modules
and the edges depict the flow of multimedia
streams. The nodes in the graph, called blocks,
represent operations that modify streams as
they flow through them. The operation parameters
of a block are specified through parameter ports.
The multimedia streams flow through data
ports. Application functions are implemented as
blocks and applications are “programmed” by
interconnecting their functional blocks. Thus,
the model enables the plug-and-play program-
ming paradigm, making application program-
ming easy and efficient and supporting reuse of
application software. A program is an appli-
cation programming model for describing con-
tinuous multimedia applications based on the
data flow paradigm. It conéists of a set of blocks
interconnected through data ports by media
fow paths. Figure 4 shows an example of a
video-capture-process—display program com-
prising video camera, motion detection, color

filter, and display blocks.

SATURN PHX-) MOTION DETRCTOR

Figure 4. Example Block-Based Program

A block consists of:

e A vector of input ports that accept

28

HDIMI: Heterogeneous Distributed Multimedia Information Management for QoS-Sensitive C*| Appiicatons in the Global Infosphere B EJOICIO{ &I B|X] A4 H2% 20004 68

incoming data streams

® A vector of output ports that produce
outgoing data streams

® A vector of parameter ports that are used
to set operating parameters

e A function that produces output streams,
consumes input streams, or transforms
input streams into output streams,

® A pair of matrices for data rate and QoS

translation between input and output ports.

A block is called basic block if its function
is coded in a language such as C++ or composite
block if it is formed by assembling and
connecting a set of basic blocks. Figure 5 shows

example basic program blocks.

Camera Display

B_lgf;l_u‘ to Resolve Port Type Conflicts
@ﬁ? a s Efj
i [l —] |

Audio Source Activity Block Video Recorder

W o e
) 6=

Contour Detector ATM Network Video Enhancer

Multimedia Flle System

Figure 5. Example Program Blocks

A port is an interface of a block that captures
interactions with other blocks. As illustrated in
Figure 6, it is defined by a data type (JPEG,
audio, etc.), a data flow direction (input or
output), and a control flow type (push or pull).
In push-type control flow, the output port takes
the initiative to deliver data to the input port.

In pull-type control flow, the input port requests

data from the output port. Therefore push output
ports and pull input ports are active, whereas

pull output ports and push input ports are

passive.
Input Output
1
Pul [—e] |
Block
Push

Figure 6. Port Types

4.3 Application Development Tools

Presto includes a Program Development Tool
(PDT). Using the PDT, a user can construct a
program from a library of basic blocks, com—
posing them by connecting output ports to input
ports without regard to push/pull port type
compatibility. Such a program is called a user
program. The Sonata PDT is an evolution of
the Presto PDT. Presto transforms a user
program to a system program, as illustrated in
Figure 7, by locating push/pull incompatibilities
and correcting them by inserting special blocks.
If a push output port is connected to a pull input
port (both ports are active), Presto inserts a
buffer block between them. If a pull output port
is connected to a push input port (both ports
are passive), Presto inserts an activity block
between them. Separation of the user program
from its corresponding system program makes
the control flow—the push/pull semantics—

transparent to the application programmer and

29

HDIM: Heterogeneous Distributed Mutimedia Information Management for CoS-Sensiive €' Apptcations in the Global Infosphere SFIHEIDICIOIBHOIX| Ki4# K23 20004 6%

simplifies block-based programming.

User Program 5%7
Block
Push/pull

Data type
Rate
Lccatlon

Resolve Port
Type Conflict

System Progra Dg#
Block

Figure 7. User Program to System Program
Translation

The Presto block-oriented programming model
was inspired by other work on process control
applications [22], graphical application devel-
opment [6,8,10], and commercial simulation
tools. However, the previous work did not
explicitly address the system integration and
timing issues encountered in constructing con-
tinuous multimedia applications. Presto was
unique in providing a software methodology
that integrates user-level application development
and system-level application execution and in
extending the block-oriented programming model
with rate and QoS properties to support the
temporal constraints of multimedia applications.

We re-implemented Presto’s Program Devel~
opment Tool (PDT) in Java. The previous version
depended on a Smalltalk-based “meta-tool” called
DoME that, while powerful, required too much
specialized knowledge to use. The Java imple-
mentation will permit relatively easy porting to
other platforms in the future. We developed a
User Interface Development Tool (UIDT) to

construct application user interfaces in a “visual”
manner consistent with Active Views concepts.
The UIDT is integrated with the PDT, so that
the same application can easily be viewed from
either perspective. We have achieved levels of
tool/run-time integration and data type support

that are significant advances over Presto:

® In Presto, the PDT was used to define a
complete program, from a continuous media
source (e.g. camera or video file), through
data transformation functions (blocks) to
sink (e.g. file or display). The program was
then run as a unit on one or more Sun
workstations.

® In Sonata, programs are built incrementally.
Data sources include ObjectStore class
extents and continuous media sources;
views can be built on top of them, and on
top of previously defined views. The
CORBA name service holds the set of data
sources and views available at any given
time. These are visible in the PDT for
further view construction. Applications can
be built and executed incrementally, adding
new views (blocks) on top of views that
are already active in the run-time environ-
ment. These applications run in a distributed
environment, linked via CORBA.

Applications developed using PDT and UIDT
can be targeted to multiple execution environ-
ments. In addition to targeting applications to
the Sonata run-time system, the tools can develop
applications for the Berkeley Continucus Media
Toolkit run-time [20,17]. For brevity, we will

30

HOIM: Helerogeneous Distributed Mullimedia Information Management for QoS-Sensitive Gl Appfications in the Global Infosphere SF2YEJOICI (&I X M4 K23 20004 6

not cover the details of these application

development tools in this paper.

4.4 Multimedia Object Management

We evaluated a number of COTS object-
oriented and object-relational database manage-
ment systems to use as a basis for persistent
object management and query. We selected
Object Design Inc.'s ObjectStore server. We
developed tools to facilitate creation of Active
Views of arbitrary ObjectStore schemas. We
extended Presto’s continuous media file system
into a Continuous Media Server (CMS) that
supports concurrent retrieval of multiple media
streams by distributed clients. CMS is integrated
with Active Views—The PDT and UIDT can
be used to develop applications that access
information from both ObjectStore and CMS.
We demonstrated that Presto’s continucus media
file system can perform significantly better than
the standard UNIX file system. The Continuous
Media Server is described further in subsection
Continuous Media Server. The COTS DBMS
evaluation is reported separately [18]. With AFRI.
concurrence, we decided not to investigate
content-based query of multimedia data. The
combination of content-based query and Active
View technology is a powerful one for automating
intelligence data analysis. For instance, one
could define a view that lists enemy tanks in
a specified geographic region, given a set of raw
images. Computing the view requires executing
image analysis algorithms. Our approach had

been to integrate existing algorithms in the

Active View framework, rather than to innovate
in image analysis. However, we believe that the
current state of the art of image analysis algo-
rithms is insufficient for a compelling demon-

stration.

4 5 Distributed Resource Management

Resource management was a major focus of
the Multimedia Database Management System
project. Presto included a component that per-
formed admission control and adaptive multi-
resource scheduling based on applicaticns’ Quality
of Service (QoS) needs. We had planned to
extend this capability to a distributed environ-
ment in Sonata. However, in concurrence with
AFRL, we decided not to pursue this objective

for several reasons:

e Applying project resources to other objec-
tives (e.g. a more substantial demonstration)
was more valuable.

e With the conversion to a CORBA-based
run-time infrastructure, the resource man-
agement architecture would have required
a redesign.

8 The resource management concepts devel-
oped in the Multimedia Database Manage-
ment System project are being extended
under a separate project funded under
DARPA’s Quorum program [7].

Thus, we replaced Presto's custom-built
distributed execution environment with one
based on CORBA. Specifically, we use lona's
Orbix product. While this involved replacing

31.

HDM: Heterogereous Distributed Mulimedia Information Management for CoS-Sensitve Gl Applications i1 tre Glebal infosphere BEZHEITICIO{SIOIX KI4H K28 20004 6F

major portions of the Sonata code, we believe
it provided the best chance of transferring the
technology to DARPA programs, such as JFACC,
that are based on the JTF architecture. We
developed a library of reusable view functions
that are building blocks for new applications.
These applications can be defined using the

application development tools defined below.

4.6 Continuous Media Server

In our Active View System, video processing
is handled by a Continuous media (CM) server
which has been developed by the University of
Minnesota [11]. We discuss this component in

the following subsection.

4.6.1 Overview

CM servers have recently been a hot research
topic for several reasons. First of all, network
speed is increasing, thus, in the near future,
services like Video on Demand, Teleconferencing,
Distance Learning, etc. are very likely to be
popular in everyday life. Given the limitations
of current network bandwidth, however, straight-
forward TCP implementations are not suitable
for such bandwidth-sensitive applications. TCP
has its own flow control mechanisms, error
detection and retransmissions, all of which add
extra time as well as network bandwidth
overhead to the transmission. This causes unex-
pected and unpredictable delay and jitter time
when transferring CM data, while timing is one
of the most critical requirements of CM appli-

cations. Most CM applications do not need

highly reliable transmission. Losing some frames
is less important than having too much delay
jitter or losing synchrony between streams. A
convincing fact is that a typical TCP connection
bandwidth is 2.6 Mbps on a LAN, 580 Kbps on
the MAN, and 104 Kbps on the WAN. While
for UDP, they are 9 Mbps, 5 Mbps, and 1.2 Mbps
respectively on LAN, MAN and WAN. QObvi-
ously, TCP is not a good candidate for high
bandwidth media streaming.

Given that observation, the natural questions

ere:

e Is UDP suitable for CM applications?

e How good/bad is it?

e What are the criteria (QoS) for evaluating
it?

e If it is bad, how do we reduce the lossy
property of UDP while still making use of
its higher capability of bandwidth for
applications that are speed-sensitive like

CM servers?

Secondly, the loss of UDP packets sent over
a network is usually caused by buffer overflow.
Experiments show that if a sender keeps pushing
UDP packets onto the network, even if network
bandwidth is good enough to handle it, there still
are some lost packets because the consuming
time of the receiver is quite large. This applies
perfectly to client/server kind of application. For
example, with video streaming, the consuming
time of a client depends largely on the capability
of video cards, which are not always good. This

is even worse for audio streams, an 8 kHz audio

32

HDiM!: Heterogeneous Distibuled Mltimedia Information Maragemen for CoS-Sensitive Gl Appications in the Global Infosphere S EID|CI0{2H8{ X! Kl4H K23 20004 68

stream (e.g. telephone voice) can be played only
at 64 Kbps. This delay could cause lots of
dropped UDP packets if there is nothing done
at the client and/or the server. Moreover, buffer
overflow can occur at any of the network switches
as well. How do we detect and deal with the
fact that the client is good enough to handle data
but network congestion limits the stream relia-
bility. Next, the fact that human ears are a lot
more sensitive to interrupts in voice than human
eyes to interrupts in video frames, raises up
another natural question: how do we deal with
loss of UDP packets in loss-sensitive stream
like audio? Moreover, given limited resources
like network bandwidth, I/O time (disk seek,
latency time), memory capacity, and CPU time,
the capability of a CM server shall obviously
be reduced as the number of streams (clients)
increased. A best effort strategy is simple, but
a preferred policy is to deny a request if the CM
server knows that it is not able to handle the
request. An appropriate admission control algo-
rithm [15] must be adopted for this purpose.
Even if all the above problems have been solved,
inter-stream and intra-stream synchronization
are questions next to be answered. Lastly, we
ported our socket-based CM server with CORBA.
We used Orbix version 2.0 from IONA Tech-
nologies for the CORBA implementation. CORBA-
version CM server replaces all C socket calls
with stubs and skeletons generated from a pair
of CORBA interface definition language (IDL)
specifications. Due to the higher fixed overhead

of CORBA such as demultiplexing and memory

management, this version shows much lower
performance. In the following subsection, we
will present a design and implementation of a

prototyped QoS-driven CM server.

4.6.2 Design of CM Server

Our CM server system is a typical client/
server application. It includes one CM server
and multiple CM clients. The CM server has
four major components. The Network Manager
responds to clients’ connection requests. The
QoS Manager is responsible for admission control
and I/0 scheduling. Each Proxy Server commu-
nicates with a client, receiving CM stream opera-
tion requests and sending CM data by network.
Each /O Manager reads out CM data from
disks for a proxy server. The CM client is rela-
tively simple compared with the CM server. The
CM client requests stream-operations (such as
open, play, pause, and close) to the CM server,
and receives data from the server—in some rate
{(given by client)—as well as displays the re-
trieved stream on the screen. It has two main
modules: Client N/W Controller and CM Player.
The client N/W Controller communicates with
CM server. It is responsible for forming requests
for starting CM streams, changing playback
rate and other QoS parameters, and stopping the
connection. Once the CM stream is started, this
module keeps receiving data and puts them into
common buffers. The client CM player periodically
gets a logical data unit from the common
buffers and plays it on the relevant display
device. Our CM server has several versions to

support various Internet protocols and environ-

ﬂ33_

HD!AA: Heterogeneous Distibuted Mulimedia Information Management for oS-Sensiive C't Applications in the Global Infosphere S HEITITIOI2I K| K43 K28 20001 68

ments such as TCP, UDP, and CORBA.

USERs
CM Server l

CM Clients

DisplayiAudio Play

Figure 8. Architecture of Continuous Media
Server

4.7 Using Commercial Off-the Shelf (COTS)
Products

For many reasons, including development cost
and standards in the application domain, we de-
cided to use commercial off-the-shelf products
for distributed object services and persistent
object management. Choosing the best products
for our particular needs was quite important.
The COTS products that we picked were Iona’s
Orbix and Object Design’s ObjectStore. The
application domain standards mandated the use
of CORBA [15]. We chose Orbix in view of its
dominant presence in the Unix environment.
The selection of an object database was much
more difficultsince there are a plethora of products,
but no standard. We chose ObjectStore, based
on a survey of OODBMSs [18]. The choice of
these products strongly affected the design and

implementation of our system.

47.1 Object Systems Interoperability
We were faced with the problem of handling

three different object systems, i.e., the one that
comes with the programming language (C++), the
distributed object management system (CORBA/
Orbix), and the object database system (Object-
Store). There is enough difference in the three
approaches and their abilities that we had to
consider interoperability issues. For example,
CORBA and ObjectStore have different object
granularities —we could model an ObjectStore
collection as a CORBA object, but the individual
objects that comprise such a collection couldn’t
be easily fit into the CORBA model. The CORBA
model defines an object by its interface, while
the ObjectStore model is tied to the implemen-
tztion of an object. This tension both helped and
hampered us. It helped us in that the two sys-
tems affected different parts of the design, and
changes made for one did not affect the other
too much. It hampered us by increasing the
number of variables to deal with in the overall

design and implementation.

4.7.2 Distribution

A related issue was that CORBA and Object-
Store have different models of distribution. This
strongly affected our model of distribution. CORBA
was mainly useful in making our framework
support distributed applications. We discovered
that, since our framework imposed certain require-
ments on the style of code written, making it
d'stributed was relatively easy. The transition
to using CORBA was reasonably painless, once
we understood the conceptual differences in the
object models. The ObjectStore model of distri-
bution affected the details of the data transfer

34

HDIMI: Heterogeneous Distributed Mulfimedia Information Management for QoS-Sensitive Gl Applications in the Global Infosphere D BIE[OICI O8I K| K4 A28 20004 6

among communicating distributed objects.

4.7.3 Database Design

ObjectStore’s implementation exposed reference
semantics, which are not naturally modeled by
conventional database views. We thus had to
make some basic changes to our model to

accommodate this.

4.8 Other Issues

Some of the other issues that we considered

in designing our framework are:

4.8.1 Choice of an Object-Oriented Language

The choices were C++ and Java. C++ has
more mature off-the-shelf products, but Java
claims to be the language of choice for dis-
tributed objects. We felt that C++ should be the
language used, since most of the COTS prod-
ucts for Java weren’'t mature enough at the time.
We used C++ templates extensively to enforce
interfaces, without being too dependent on a
class hierarchy to provide it. This was of great
help when we had to modify our class hierarchy
to accommodate Orbix and ObjectStore. Also,
the concept of template traits helped us hide the
differences in accessing persistent and non-
persistent objects, and differences in accessing

local and remote objects.

4.8.2 Real-Time and QoS

We envisioned the application being used
interactively, with the presentation of multiple
related data~types at the same time. For example,

one window would show a map, another would

show a video of the same location, and another
would list the resources in that area. In enforc-
ing real-time and QoS requirements [28], we
were strongly limited, since we had no good
model of the behavior of the COTS products
that we used. Due to this, we have not yet

addressed these issues in our implementation.

4.9 Demonstration Application

We developed several demonstrations in the
course of the HDIMI project. We developed
technology-oriented demonstrations of Active
Views, the Continuous Media Server, and the
application development tools. All of these
technologies have been incorporated into a
larger demonstration that shows how Sonata
technologies apply to air combat planning and
monitoring. Section Demonstration Application
describes this demonstration. Instructions for
operating the demonstration software are

documented separately [27].

5. CONCLUSIONS & FUTURE WORK

The HDIMI project has focussed primarily on
developing broadly-applicable information man-
agement technology as opposed to ch appli-
cations. The technology is sufficiently mature
that it should be used and evaluated in the
context of application-oriented programs such
as DARPA’s JFACC, Dynamic Database, and
Adaptive Information Control Environment (AICE)
programs. To this end, the University of Min-

nesota and Honeywell Technology Center have

35

HDIM: Heterogeneous Distributed Mltimedia Iformation Management for QoS-Sensitive C'f Appications i the Giobal Infosphere SHREJTICIO|BIYI X K4 K2 20001 6¥

submitted a number of proposals to DARPA. All
have been deemed “selectable”. We continue to
pursue this course of action and solicit AFRL
assistance. A second path that can be pursued
simultaneously is to extend the capabilities of

the existing Sonata technology.

6. ACKNOWLEDGEMENTS

We would like to thank Mr, Mark Foresti and
many colleagues at U.S. Air Force Research
Laboratory for their many valuable suggestions
and sponsorship. The ideas implemented in the
HDIMI project have benefited a lot by discus-
sion with our colleagues, Raja Harinath, Difu Su
of University of Minnesota, Prof. Duminda
Wijekesera of George Mason University, and
Dr. Deepak R. Kenchamanna-Hosekote of IBM
Almaden Research Center, USA. We would like
to thank all of them for their valuable sugges-
tions and many parts of implementation on this

work.

7. REFERENCES

[1] Agrawal, M., Kenchammana-Hosekote, D. R,,
Pavan, A., Bhattacharya, S., and Vaidyanathan,
N. High Performance Network Services for
Multimedia-Integrated Distributed Control.
Technical report, Honeywell Technology Center,
Minneapolis, MN, July 1996.

[2] Chairman of the Joint Chiefs of Staff, Joint
Vision 2010, 1998. http://www.dtic.mil/doctrine/
jv2010/

[3] Zhigang Chen, See-moong Tan, Roy H. Campbell,
and Yongcheng Li, Real Time Video and
Audio in the WWW.

[4] Fayad, M., and Schmidt, D. Object-Oriented
Application Frameworks. Communications of
the ACM, Vol. 40, No. 10 (October 1997) 32-38.

[5] Gosling, J., Yellin, F., and the Java Team. The
Java Programming Language. Addison-Wesley,
1996.

[6] Haeberti, P.E. ConMan: A Visual Program-
ming Language for Interactive Graphics, Com-
puter Graphics, August 1988,

[7] Huang, J., Jha, R., Heimerdinger, W., Muhammad,
M, Lauzac, S., Kannikeswaran, B., Schwan, K.,
Zhao W., and Bettati, R. RT-ARM: A real-
time adaptive resource management system
for distributed mission-critical applications.
Workshop on Middleware for Distributed Real-
Time Systems, San Francisco, RTSS-97.

[8] Ingalls, D. et al. Fabrik: A Visual Pro-
gramming Environment, Object-Oriented Pro-
gramming. Systems, Languages, and Appli-
cations, Special Issue of ACM SIGPLAN
Notices, Vol. 23, No. 11, November, 1988

[9] C4 Architecture & Integration Division (J6I),
J6, The Joint Staff, C'I for the Warrior, June
12, 1993.

[10] Kass, M. CONDOR: Constraint-Based Dataflow,
Computer Graphics. July, 1992.

[11] Lee, W., Su, D, and Srivastava,]. QoS-based
Evaluation of File Systems and Distributed
System Services for Continuous Media Provi-
sioning. To appear in Information & Software
Technology, Elsevier Science, 2000,

[12] Lee, W. and Sabata, B. Admission Control and
QoS Negotiations for Saoft-Real Time Appli-
cations, in Proceedings of the IEEE Inter-
national Conference on Multimedia Computing
Systems (ICMCS), Florence, Italy, June 1999.

[13] Lee, W. and Srivastava, J. An Algebraic QoS-
based Resource Management Model for
Competitive Multimedia Applications, To appear
in Journal of Multimedia Tools and Appli-
cations, Kluwer Academic Publishers, 2000.

36

HDIM): Helerogeneous Distributed Multimedia nformation Management for GoS-Sensitive C*) Applications in the Global Infosphere DI E|O|CI0{2}91X| R4 K|2% 2000 63

[14] Lee, W., Su. D, Srivastava, J., Kenchammana-
Hosekote, D.R., and Wijesekera, D., Experi-
mental Evaluation of PFS Continuous Media
File System, ACM International Conference on
Information and knowledge Management (CIKIM
97), Nov. 1997.

[15] Object Management Group. The Common Object
Request Broker: Architecture and Specification
Revision 2.0. July, 1995.

[16] Ousterhout, J. Tcl and Tk Toolkit. Addison-
Wesley, 1993.

[17] Patel, K. Introduction to the Continuous Media
Toolkit (CMT). Berkeley Multimedia Research
Center, 1995.

[18] Pazandak, P. and Srivastava,]. Evaluating
Object DBMSs for Multimedia. [EEE Multi-
media, 4, 3 (July-September 1997) 3448. Also
submitted to AFRL as a COTS technology
evaluation report under the HDIMI contract.

[19] Schmidt, D., and Fayad, M. Lessons Learned:
Building Reusable OO Frameworks for Dis-
tributed Software. Communications of the
ACM, Vol. 40, No. 10 (October 1997) 8587.

[20] Smith, B.C., Implementation Techniques for
Continuous Media Systems and Applications,
PhD thesis, University of California, Berkeley,
Computer Science Department, 1994.

[21] Steinmetz, R. Human Perception of Jitter and
Media Synchronization, IEEE Journal on
Selected Areas in Communication, Vol. 14, No.
1, pp. 61-72, 1996.

[22] Stewart, D.B.. Design of Dynamically Recon-
figurable Real-Time Software Using Port-

Based Objects, Technical Report CMU-RI-
TR-93, Advanced Manipulators Laboratory,
The Robotics Institute, and Department of
Electrical and Computer Engineering, Carnegie
Mellon University. July, 1993.

[23] D.B. Stewart, R.A. Volpe, and P.K. Khosla.
Design of Dynamically Reconfigurable Real-
Time Software using Port-based Objects. Tech—
nical Report CMR-RI-TR-93-11, Department
of ECE, Carnegie Mellon University, 5000
Forbes Avenue, Pittsburgh, PA 15213, July
1993

[24] David Tennenhouse, Joel Adam, David Carver,
Henry Bouh, Michael Ismert, Christopher
Lindblad, William Stasior, David Wetherall,
David Bacher, and Theresa Chang. The
ViewStation: A Software-Intensive Approach
to Media Processing and Distribution.
Multimedia Systems Vol 3, pp. 104-115, 1995.

[25] Teknowledge Federal Systems, Jjoint Task
Force Architecture Specification, April 13,
1994. Updated information available at http://
jtfweb3.nosc.mil/.

[26] Thompson, J. and Gottlieb. Macromedia Direc-
tor Developers Guide to Lingo, 1995.

[27] Sonata User and Administration Manual, sub-
mitted to AFRL as an HDIMI project deliverable,
1988.

[28] Wijesekera, D, and Srivastava, J. Quality of
Service (QoS) Metrics for Continuous Media,
Multimedia Tools and Applications, Vol 3, No.
1, pp. 127-166, September. 1996.

37

HDIM: Heterogeneous Distributed Mutimedia Information Management for QoS-Sensiive C'l Appfications in the Global Infosphere SH=2HE{OICI 04 01IX] K4 X238 2000\ 68

Wonjun Lee

Dr. Lee is Assistant Professor of the School of Computer
Science Telecommunications at the University of Missouri
- Kansas City, USA. He received the B.S. and M.S.
degrees in computer engineering from Seoul National
University, Seoul, Korea in 1989 and 1991, respectively.
He also received the M.S. in computer science from the
University of Maryland, College Park, USA in 1996 and
the Ph.D. in computer science and engineering from the
University of Minnesota, Minneapolis, USA, in 1999. His
research interests include networked multimedia computing,
distributed systems, real-time systems, databases, and
Internet technology.

Jaideep Srivastava

Dr. Srivastava is Professor of the Department of Com-
puter Science and Engineering at the University of Min-
nesota, Minneapolis, USA. He received the Ph.D. and M.S.
degrees in computer science from the University of
California, Berkeley, USA in 1988 and 1985, respectively.
He received the B.S. in computer science from Indian
Institute of Technology (IIT), Kanpur, India in 1983. His
major research interests include Distributed Systems,
Multi-Media Computing, Data Mining, Web Mining, and
Database Integration.

James Richardson

Dr. Richardson is Technical Staff of Honeywell Tech—
nology Center, Minneapolis, USA. He holds a Ph.D. in
Computer Science from Stanford University. His re-
search areas include Database Systems, Real-Time Com-
puting, and Multimedia Systems.

38.

