Abstract
In existing models in optimization, the crisp data improve has been used in the objective or constraints to derive the optimal solution, Besides, the subjective environments are eliminated because the complex and uncertain circumstances were regarded as Probable ambiguity, In other words those optimal solutions in the existing models could be the complete satisfactory solutions to the objective functions in the Process of application for industrial engineering methods to minimize risks of decision-making. As a result of those, decision-makers in location Problems couldn't face appropriately with the variation of demand as well as other variables and couldn't Provide the chance of wide selection because of the insufficient information. So under the circumstance. it has been to develop the model for the location and size decision problems of logistics facility in the use of the fuzzy theory in the intention of making the most reasonable decision in the Point of subjective view under ambiguous circumstances, in the foundation of the existing decision-making problems which must satisfy the constraints to optimize the objective function in strictly given conditions in this study. Introducing the Process used in this study after the establishment of a general mixed integer Programming(MIP) model based upon the result of existing studies to decide the location and size simultaneously, a fuzzy mixed integer Programming(FMIP) model has been developed in the use of fuzzy theory. And the general linear Programming software, LINDO 6.01 has been used to simulate, to evaluate the developed model with the examples and to judge of the appropriateness and adaptability of the model(FMIP) in the real world.
기존모형을 이용한 연구들은 최적화기법에 있어서 의사결정을 지원할 수 있는 최적해를 도출해내기 위해 목적식이나 제약조건식에 정확한 데이터 값을 입력시켜 최적해를 계산하였다. 또한 현실세계의 불확실하고 주관적인 상황들은 확률적 불확실성으로 간주하여 주관적인 상황들은 배제하였다. 즉, 이러한 최적해는 의사결정자가 의사결정상의 위험을 최소화하기 위하여 경영과학적인 방법들을 적용하는 과정에서 기존모형들의 목적함수를 완전하게 만족시켜 주는 해라고 할 수 있다. 이에 따라 수요량의 변화 및 기타 변수들의 변화에 적절히 대응할 수 없었으며, 입지의사결정자에게 입지결정에 대한 정보의 부족 등으로 선택의 기회를 폭넓게 제공하지 못하는 문제가 있었다. 이러한 배경하에서 본 연구는 의사결정분석에서 엄격히 주어진 제약조건하에서의 목적식을 최적화하는 문제로서 제약조건을 반드시 만족시켜야만 했던 기존의 의사결정문제를 바탕으로, 애매한 환경에서의 의사결정을 주관적인 측면에서 가장 합리적으로 이루어 보려는 의도로 Zadeh교수가 제안한 퍼지이론을 이용하여 물류단지 입지 및 규모결정모형을 개발하고자 하였다. 모형의 현실적 적합성 및 적용가능성을 분석한 결과, 첫째, 입지 및 규모결정시 기존의 연구에서 제시할 수 없었던 현실세계의 유연적이고 융통성있는 측면을 반영하여 입지 및 규모를 결정해 낼 수 있었으며 둘째, 기존의 입지결정 모형에 비해 상대적으로 많은 의사결정 상황을 최종의사결정 자에게 다양한 정보 및 선택의 기회를 제공해 줄 수 있었다. 따라서 이 결과가 반드시 최적의 입지를 제시하고 있다고는 단정할 수 없으나 모든 자료들이 빠짐없이 정확하게 모형에 반영될 경우 현실적 상황에서 모형적용이 가능하다고 하겠으며 이 모형은 현실상황에서 발생하는 기타시설의 입지선정 문제에도 적용할 수 있을 것이라고 판단된다. 수 있을 뿐 아니라, 평가된 지표가 신뢰할 만한 수준이 아니라면, 추정된 결과를 보정할 수 있는 가능성을 제시하고자 한다.or objection to the criticism of eating dog meat is that male and female commonly answered most that ′As dog meat food Is our traditional food culture. it is not the problem to be found fault with by others.′ The second reason for that is followed by iris deliciousness.up compared the service quality perception factor of the food service provider. The result was that the group having both the " will buy the service again" and "will suggest to others" criteria, that is, with higher loyalty, tend to have higher points than other group s in the dimension of ′Employee attitude′ and ′ Cleanliness′(p〈0.05), which means these two dimensions are closely related to customer loyalty. 3) From a regression analysis for the service quality perception level of the food service provider and overall satisfaction, it has been found that :