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In this paper, we analyze self field effects of Bi-2223 tape-stacked cable assuming constant
current density in the cross section of stacked cable. Generally, the critical current of Bi-2223
tape-stacked-cable is much less than the total summation of critical currents of each tape,
which is mainly due to the self magnetic fields of the cable itself. Therefore, to predict the
critical current of B1-2223 tape-stacked-cable, we need to analyze the self field effects of the
stacked cable as well as the critical current density data (J.) of one tape. To make it more
complex, the critical current degradation of a Bi-2223 tape is an-isotropic; the critical current
is lower in the normal magnetic field(to the tape surface) than in the parallel field. In the
paper, a novel approach to predict the critical current of a Bi-2223 tape-stacked-cable from a
J.-B curve of one tape is presented with the assumption of constant current density across the
stacked cable. The approach basically includes the load analysis of the stacked tapes, and its
usefulness is confirmed by the experimental data.
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1. INTRODUCTION

So far, many efforts have been focused to develop
high  performance @ HTS  (High  Temperature
Superconductor) magnets for the ultimate applications to
power system devices. Magnet designers, however, have
had difficulties in the estimation of the maximum
operating current of the designed magnet from the tested
short sample data, due to the degradation of the critical
current density in the magnet. Similar story applies to the
HTS electrical bus bar. It has been found that the critical
current of Bi-2223 stacked tapes is much less than the
total summation of critical currents of each tape, which
is mainly attributed to the self magnetic fields.
Furthermore, since the critical current degradation of Bi-
2223 tape is greater in the normal magnetic field (to the
tape surface) than in the parallel one, detailed magnetic
field configurations are required to estimate the self field
effects. In this paper, we suggest a load line analysis
method, which predicts the critical current of stacked
cable from an experimental critical current characteristic
curve (Jc -B) of a single tape. The load lines can be

defined using either overall current density or
superconductor current density with the assumption of
constant current density across the stacked cable. In this
paper, the critical current calculation procedures for both
cases are described and the experimentally obtained
critical currents are compared with the calculated ones to
show the usefulness of the suggested load line methods.

2. THEORY AND EXPERIMENTS

2.1. Load lines of stacked tapes using overall current
density

The concepts of load lines using overall current
density were introduced in Ref. [1], and we repeat them
here briefly to further the idea to the load lines using
superconductor  current  density only. Bi-2223
superconductor is usually rolled into a tape to have a
final rectangular cross sectional shape. Current in the
tape, of course, generates self field magnetic field around
it, and the magnetic field distributions depend on the
rectangular shape. Fig.1 shows a cross sectional view of
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a mono-filamentary conductor of which width and height
are 2a and 2b, respectively. It also shows that its filament
has width of 2a, and height of 2b, If the current is
distributed uniformly on all over the conductor, B,
and B, the maximum magnetic field of x and y
component, always occur at (0,-b), and (a,0),
respectively. , B, and B, are calculated to be [1],

B\:maxz‘]'a'jyp(a’)’ Byn1ax=J'a'En(a) (1)
where,
F (@) =ﬂ~[ln(l +4a*)+4a-tan™ (L):] @)
i 2z 2
F,,(a'):ﬁomi:a vln(4+a2)+4-tan"(z):' @)
2z a’ 2

, and a=b/a. J is an over all current density across the
cross section of a conductor. Maximum magnetic fields
described in (1) are functions of overall current density
and the field factor F which depends on only
geometrical configuration of the tape. F, and F, in (2)
and (3) are field factors for parallel and normal
component to the tape surface. For a given specific shape
factor a, field factor is fixed, and we define (1) as load
lines using overall current density. Both F, and F,
increases as o increases. The detailed configurations of
F,and F, as a function of a are described in [1].
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Fig. 1. Cross sectional view of a rectangular shaped
mono-filamentary tape.

2.2. Load lines of stacked tapes using superconductor
current density

Load lines introduced in the previous section are
defined using overall current density across the
conductor. The actual magnetic fields experienced by the
superconductor in a tape, however, might be higher than
the calculated ones from the previously introduced load
lines. To predict the self field effects more precisely, one
needs the load lines of superconductor only. Since
maximum magnetic field locations vary as we stack the
tapes, we need to define field factors for the newly
stacked tapes. Basically, one can calculate magnetic field
distributions of stacked tapes analytically {3], and can
decide field factors for any point in a conductor. Our
interesting point is, of course, the maximum magnetic
field points for B, and B,. It can be induced that the
maximum magnetic field point for B, always occur at
bottom of the lowest filament as can be seen in Fig. 2
and 3. The maximum magnetic field point for B, is,
however, depends on the stacked number of the tapes.
For the odd-stacked tapes, the maximum B, occurs at the
right side of the mid-plane in the central filament (Fig. 2).
For the even-stacked tapes, the maximum B, occurs at
right side of the two central filaments (See the dark short
solid lines in Fig. 3.), which depends on the filament
shape. Basically, the field factors of stacked tapes can be
calculated by superposing the field factors of each
rectangles with proper sign.

For odd-stacked tapes, the field factor F, and F are :

Foe=F,(a))-F,(a;) + F(as)-F,(a,)+ - @)

F,v=Fn(a'1)‘F,,(a’2)+F,,(a3)—Fn(g4)+ (5)

, where o= bla;, a, = (b+bpla, , a;= (2b+bj/a, , and
a,=(3b+b, )/a; and so on. For even-stacked tapes, the
field factor F, can be expressed as

Fo=-Fy(a)+F,(a,) ~Fy(a3)+Fp(a)+ - (6)

, Where o= (b-bp/a,, o, = (b+by/a,, ay= (2b+by)/a,, and
a,=(3b+b; )/ a; and so on. The location of B,
however, is not at (a;, 0), but does vary along the dark
solid line as in Fig. 3, depending on the shape of the
conductor. In this case, we cannot use (3) for the field
factor calculation but have to find maximum magnetic
field point and derive new formula, referring to the
analytic expression of rectangular-shaped conductor
[11,[2]. If we put prime notation on the newly derived
field factor as F,’, which is too lengthy to include, F, for
the even-stacked tapes is
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Fig. 2. Cross sectional view of odd-stacked tapes. B,
occurs at (0, -by), for one tape, and at (0, 2b+b;) for
three stacked tapes and so on. B,,,,, occurs at (ap, 0) for
both one and three stacked tapes.
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Fig. 3. Cross sectional view of even-stacked tapes. B,
occurs at (0, b-by), for two stacked tapes, and at (0,
3b+by). By occurs at dark solid lines, depending on the
tape shape.

Fy=F'n(al)_F'n(0'2)+F'n(a3)—F'n(a’4)+ (7)

, where a, a, o3 and o, are the newly defined
variables. The maximum magnetic fields of B,,, and
B,,... are calculated as in (1), but one should replace the
overall current density and « (half of the conductor
width) by the superconductor current density and a, (half
of the filament width).

Fig. 4 shows the calculated curves of the above
mentioned field factors as a function of stacked number
for a specific tape size, which is described in Table 1.
Also in the figure is the field factors using overall
current density, which is based on (2) and (3). One can
notice that the field factors using superconductor current
density is smaller than those of overall current density,
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Fig. 4. Calculated field factors vs. stacked number. The
solid ones are from using supercoductor current density,
and the dotted ones, overall current density. The circled
ones are the normal magnetic field factor to the tape
surface.

which was expected from the minus terms in (4) through
(7). But the maximum magnetic fields are usually quite
the reverse because the superconductor current density is
as many times larger as the overall current density,
depending on the silver to superconductor ratio of the
conductor.

2.3. Generation of J, vs. self-field compensated
magnetic field

To do load line analysis, one needs critical current
density vs .self field compensated magnetic field
characteristic curve. The dotted lines in Fig. 5 are the
experimentally obtained J.-B curves for parallel (square)
and normal (circled) magnetic fields to the tape surface.
We used self field factors to calculate the incremental
4B due to transport current, and added the effects to the
external magnetic field. The solid ones are finally
obtained J, vs. self field compensated magnetic fields. To
see the compensated effects more clearly, we added the
enlargement inside the main box with the magnetic
field range of 0 - 0.02[T].

3. EXPERIMENTAL AND DISCUSSION

Table 1 and Fig. 6 illustrate the size and cross
sectional shape of BSCCO-2223 tape, used in J,
measurement. Field factor calculations of Fig. 4 and J,, -
B curve of Fig. 5 were made from the data of Tape 2. For
Tape 1, after heat treatment of long tape, we cut the tape
into 10 cm long. The tapes were stacked as desired, and
were subjected to final heat treatment. For Tape 2, we
cut the tape after final heat treatment, and stacked them,
and fastened using silver wire.
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Fig. 5. Superconductor critical current density vs.
external (dotted line) and self field compensated (solid
line) magnetic field. Subscript ‘c’ in the legend means
compensation. Inside the box is the enlargement of the
range of 0 — 0.02 [T].

Table 1. Size of the BSCCO-2223 tapes in [mm]

Tape 1 Tape 2
Width of the tape (2a) 3.0 3.2
Height of the tape(25) 0.14 0.16
Width of the filament (2a,) 2.5 2.7
Height of the filament (2b) 0.06 0.07

Fig. 6. Cross sectional view of mono-filamentary
BSCO0-2223 Tape 2.

Fig. 7 and 8 shows load lines of Tape 2 with the self field
compensated magnetic fields. One can find 18 load lines
for 1-9 stacked tapes, 9 load lines for parallel magnetic
fields (dotted), and the other 9 for normal magnetic
fields (solid) to the tape surface. As the magnetic fields
increases, the critical current decrease due to normal
magnetic field is larger than that the decrease due to
parallel magnetic field. Therefore, load lines of normal
magnetic fields with J-B, determine the critical points
rather than those of parallel magnetic fields with J.-B,.
Finally obtained critical points are the asterisked points
in Fig. 7 and 8. With these points, one can calculate the
critical currents of any numbered stacked tapes, which
are summarized in Table 2 and 3. The Z.,; and /,;are the
calculated critical currents using overall (Fig. 7) and
superconductor (Fig. 8) current density, respectively, and
I, is the measured one. As the stacked number increases,
the measured critical current decreases dramatically, and
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Fig. 7. Load lines with J, vs. B (Self field compensated
field) of Tape 2 using overall current density.
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Fig. 8. Load lines with J, vs. B (Self field compensated
field) of Tape 2 using superconductor current density.

the calculated ones, /.., and I,,, trace the decreasing
trends quite well, but the absolute magnitude still have
discrepancies to explain the critical current degradation
after the stacking. For Tapel, the I, and I, are much
smaller than the current NxI,, multiplication of the
stacked number by the critical current of one tape, but
still larger than the measured ones. For Tape 2, the 7,
and I, are also much smaller than the current NxI,, but,
in this case, smaller than the measured ones. Notice that
Tapel was subjected to final heat treatment after
stacking, which might mean that the stacked tapes have
no gape between the tapes. But for Tape 2, we stacked
tapes after final heat treatment, and packed by using
silver wire. We found small gaps between the stacked
tapes, and the calculation shows that there are 10-20%
increases in critical current by introducing 0.1 mm gap
between the tapes. That can explain the large measured
current density of Tape 2, in part. Further more, after
removing the stacked tapes one by one, we found that



Table 2. Critical currents of stacked tapes of Tape 1.

Stacked

Number NxI, I, L., L,
(v

1 12.3 12.3 12.3 12.3
3 36.9 31.9 30.7 27.0
5 61.5 459 45.0 354
7 86.1 59.4 58.2 42.8

L.;: Calculated critical current using overall current density
1..>: Calculated critical current using superconductor current density
1,,: Measured critical current

Table 3. Critical currents of stacked tapes of Tape 2.

Stacked

Number NxI I, I, I,
(™)

1 14.8 14.8 14.8 14.8
2 29.6 20.8 20.7 25.2
3 44 4 253 24.6 34.5
4 59.2 30.1 29.3 473
5 74.0 349 34.0 56.7
6 88.8 40.3 39.7 64.2
7 103.6 457 44 4 73.6

{2 Calculated critical current using overall current density
1,.»: Calculated critical current using superconductor current density
1,,: Measured critical current

each critical current of stacked tape of Tape 2 varies 14-
19 [A], while we used 14.8 [A] for the generation of J.-B
curve. Finally, the filament cross sectional shape is not
strictly rectangular as shown in Fig. 6, which causes
errors to determine the filament sizes. It is thought that
the above described reasons result in the higher
measured values than the calculated ones in Tape2-
stacked cables.

Table 2 and 3 shows that I, always has smaller values
than 7., as expected, but the differences between them
are quite negligible for these specific cases. Actually, the
differences between 7., and I ., depend the relative sizes
of the tape and filaments. It is believed that for Bi-2223
stacked cables, however, considering the usual cross
sectional shape of the tape, the differences between I,
and I, could be small in most cases. Therefore, we
conclude that load line analysis for self-field effects of
stacked cables can be performed with (1) - (3), which
use overall current density rather than (4) - (7), which
use the relatively complicated superconductor current
density.
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4. CONCLUSION

Load line analysis of Bi-2223 stacked tapes for the
estimation of critical current degradation due to self field
was performed with the assumption of constant current
density across the stacked cable. The load lines were
defined using either overall current or superconductor
current density by introducing respective self field
factors. The calculated critical currents using the
suggested load line analysis showed some discrepancies
from the measured values, which could be explained by
the non-uniform current density along the tape, the gaps
between the tapes of stacked cable, and the non-
rectangular shape of the filaments. With these causes
fixed, however, the load line analysis can explain the self
field degraded tendencies of stacked tapes quite well,
and can be used when estimating the critical current of
stacked tapes. It is believed that the critical current of
multi-filamentary tape-stacked cable can also be
estimated using the suggested load line analysis with
overall current density. Finally, to predict the self field
effect more precisely, we need to calculate the critical
current density distribution across the stacked tapes.
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