42T) Axgelre] 4g 3 TeAs 49 58 613
=

g Zgo 3'{]_-3] x]&;'%ld]liﬂ A3
* 4o 58

F ZRA2

(Run-Time Process Definition Accommodation in Workflow

Management Systems)
s+’ Ams”

(Dongsoo Han) (

g 7

Abstract

. 8}

L 85t HaERS A Alago] ol Fzo]
Bo|xe X3 A9 £

A Yazees
A WAL S0 metElen o

Jaeyong Shim)

shte] AIZEZL7 AT AYE7] SslMe
AE B2 e QoA T2 gAAle] HA
L 38E Aeole 4AZES 4Y Fo) FEHA
AEE2F FEL T = Zo] A
AaAde 49 Fo Ha2E29E 4
AN&gola A¥ F H2EES A 7

=
<
s
5 of

Z dz2E29 AYE 9% ANA =2

FEse gudzel naslth 49 F

=

2

A9 Tzt AFE 2E,

W Ho @ o8 N

In conventional workflow paradigm, workflow template has to be defined at process

build time before the workflow to be executed automatically. However there are many cases that the
whole workflow cannot be defined at process build time clearly. Rather, it sometimes more proper that
the parts of the workflow are defined at run time and the whole workflow is deduced from integrating
the partly defined workflow [ragments. For a workflow management system to manage the situation,
it has to be equipped with run time process definition capability. In this paper we show how to
accommodate run time process definition capability in workflow management system and what the
system should be like to accommodate it. Three workflow fragment templates are suggested for run
time process definition and an algorithm [or deriving a workflow from the workflow fragments is
illustrated. Connector facility is devised as a means to implement process definition at run time and
the structure of the connector facility is illustrated with its functions.

1. Preface

Even though workflow concept has been widely

spread nowadays, business process automation

using Workflow Management System(WfMS) is not
so common in large scale enterprises(l, 2, 7]. As a

T EAAY AFPRFINSAAGD FHL TS
dshan@icu.ac.kr
ol g 9 ATFREASANStE Te
jacyong7@icu.ac.kr
=S 20009 19 269
AargkE o 2000d 99 274

result, many business processes for large :scale
enterprises still remain in non-automated state. We
may ascribe the reason to the weak intention of
the top manager to support the automation of the
business processes of his company, but we believe
that the limited capability of the current workflow
management systems is more serious hurdle for
that.

workflows as

We used to classify production

workflow, administrative workflow and ad hoc
workflow according to the properties of workflow

and many workflow management system vendors

614 AR =FA delep o) Al 27 E Al 4 Z000.12)

insist that their system is better suited to a certain
workflow[1, 2]. But

workflows of large scale enterprises are in the

type of usually, many
mixed form of the workflow types and the ad hoc
workflow is the major hurdle to automate them.
Dynamic reconfiguration[11, 12] is often sited as a
solution to cope with the situation. But we found
that the dynamic reconfiguration is not enough and
the conventional workflow paradigm in which
workflow has to defined at build timel3, 4, 7, 10]
whole at once for the automation does not fit to
many cases. In some cases, process definition at
run time is a normal behavior in real situation.
Only a part of the process is defined by a
workflow participant and the whole workflow could
be derived Dby integrating the workflow fragments
defined by workflow participants at run time. What
is important in workflow management system is to
provide a mechanism and functions to automate the
workflows on computers connected in a network by
connecting the workflow fragments defined at run
time.

The fact that

obtained by integrating workflow fragments defined

the whole workflow can be

at run time provides us totally different view on
workflow paradigm. That is, BPR(Business Process
Reengineering) in which traditional business process
are redesigned to new processes to improve their
efficiency is the not the preliminary step to
automate a business process but could be the
intermediéry step to refine the captured current
process. Thus the overhead of BPR to understand
current process can be eliminated if the workflow
can be derived automatically from the workflow

fragments defined at run time where a business

process should be automated even without
predefined process at all.

In this paper we introduce the notion of
Run-Time Process Definition(RTPD) and the

functions that workflow management system has to
provide for the support of the run time process
definition. Using RTPD, workflow participants can
define processes at run time as well as process

build time. As a means to implement RTPD we

propose connector facility in that three types of
workflow fragments are suggested as a simplified
way of workflow definition at run time and an
algorithm to integrate the workflow fragments into
a workflow process automatically has been devised.
The way of process definition at run time is
allowed only in restricted form because only

workflow fragments are defined by general
workflow participants and the fragments should be
integrated to generate a workflow. The defined
workflow fragments are registered and managed in
afterwards like

connector facility to be used

workflow templates are handled in workflow
system. Thus the connector facility can be regarded
as a semi-workflow system including the role of
the inbox of a department.

For the RTPD to be integrated with workflow
the workflow

management system, managermment

system has to be extended appropriately to

accommodate it. The structure of
ICU/COWS(Connector Oriented Workflow System
of Information and Communications University) is
introduced and we show how we extend the
system to accommodate the RTPD. We found the
architecture of ICU/COWS in which workflow task
managing instances is generated in the form of
object instance and the whole task managing
instances for a workflow instance is controlled by a
global task managing instance is very flexible to
implement RTPD. Note that, in RTPD the Task
Managing Instance(TMI) should be generated at
run time and the TMIs generated at run time
should be treated in the same way as the TMlIs
generated from the workflow templates defined at
workflow build time.

The paper is organized as follows. In section 2,
we describe run time process definition and its
benefits. In section 3, we explain the concept and
usage of the connector facility in a workflow
system. In section 4, we describe ICU/COWS and
the extension of the system to accommodate the
connector facility. In section 5, we show how an
in the

example workflow can be implemented

connector-oriented workflow system. In section 6,

Hazzs gy AagdAe] 29 F Z2A2 Fo] 58 615

we describe related works which have been

performed on workflow model induction. We

discuss conclusion in section 7.

2. Run-Time Process Definition and its
Benefits

We define RTPD as the action of defining new
workflow processes or adding new workflow paths
to the predefined workflow processes at run time of
workflow instances. Almost all the definitions that
can be defined at process build time can be defined
also at run time. Thus the definition covers much
wider range than the dynamic reconfiguration of
workflow management system in which only partial
modification to the predefined workflow templates
or running instance is the main interest. Besides, in
RTPD the registry of the defined processes should
be mandatory because they have to be us/‘ed by
manipulated in automatic

users and process

derivation. Figure 1 compares the differences
between dynamic reconfiguration and RTPD in
several aspects.

Items RTPD Dynamic Reconfiguration

Definition Time Run time | Run time

Predeflined Workflow Yos or No| Yes

Template

Dcfinition Scope Broad Narrow

Influences to other 4

Workflow Instances No Yes

Management of Defined -

Processes Mandatory | Optional,

Fig. 1 Comparison matrix between RTPD and

dynamic reconfiguration

We can expect several additional benefits when
the RTPD facility is accommodated in workflow
rhanagement system. First, many real world
workflows of which automation is given up because
of its properfy requiring RTPD can be automated.
Second, current workflow paths can be derived
automatically from the workflow fragments defined
at run time if some deliberately devised facility is
provided. The automatically derived workflow

processes can be the start point of BPR. Third,

workflow process definition overhead can be

diminished drastically if workflow management
system can derive workflow processes from the
workflow fragments automatically. Fourth, more
flexible integration of various workflow types such
as production, administrative and ad hoc workflow

is possible.

3. Connector Facility

A connector is defined as a storage and services
either to store incoming work itéms or data from
the other departments or to access the storage[5].
The connector facility plays a key role in
implementing RTPD in ICU/COWS. The primary
to connect

function of the -connector is

inter-department workflow with the following
functions. First, the connector has a storage service
to store the work items to be handed over from
several departments to one department. When it
stores the work items, for the same workflow
instances to be connected it keeps the workflow
instance ID and propagates it until the process
instance is completed. Second, the connector has' to
provide some means to access the data it stores.
For that APIs(Application

Interface) for programs or

it provides Program

application user
Third,

functions to register events and keep statistical

interfaces for wusers. the connector ' has
information on historical events. This information
not only shows the current situation but also' can
be used as basic data for extracting the execution
path to enable BPR. Fourth, the connector prdifideé
facility to define structured data easily. The defined
structured data for each connector are manipulated
and managed by the workflow system in integrated
Although

managing is similar to that of workflow relevant

manner. the way of structured data
data, it differs from the workflow relevant data in
that it can be defined at run time. Fifth, the
connector has a function to keep the workflow
fragments defined at run time and provides some
facilities to reuse the workilow fragments easily.
Using this facility, the whole workflow can he built

616 AR 83 =2 A b o]

from the defined workflow fragments in an

Interface { ¢ Uset
Layer M"“"“'ﬂ ' Infos

| Apptieation
Progum

F

Shucared
Data

Service Histary

Datn

Layer
Structured 120 n i ALcess
Maniging Senvree Serviee

Callection ol o
Senee Servie Inagments
. * o i

[/

7) T

Process Struutaned

Document |,
Templue S || paw
Sturage ‘ o Stowge

Snage iy
Layer Storage

Tig. 2 Layered view of connector facility

incremental way. Figure 2 shows the layered view
of the connector facility.

3.1 Workflow definition in ICU/COWS

In a connector-oriented workflow system,
workflow either can be defined at workflow build
time like conventional workflow system or
fragments of workflow can be defined at run time.
The defined workflow fragments are stored to
some place in the form of workflow templates so
that they can be exploited for. the next~ workflow
definition.
workflow template is registered as basic data for
BPR. The last node of the workflow fragments
defined at run time should be either the end node
of the whole workflow or a connector to the
department to which the work item has to be
passed. One or more connectors could bhe connected
as the last nodes of a workflow fragment.

For the definition of the workflow fragment of a
department, both activity -oriented worlkflow
definition and actor-oriented workflow definition are
supported. In activity-oriented workflow definition,
which is the standard workflow definition method,
workflow is composed of connected activities that
have their own attributes respectively. Therefore, in
activity-oriented workflow definition, the activity
derivation is inevitable and the naming of the
activity should be entailed. To the run time definer
of the simple transient workflow fragment, the
activity derivation and naming process could be
cumbersome chores.

definition, the definer only lists the actors that the

JEb] o] 2=

The frequency of the usage of‘\the\'

In actor-oriented workflow

A 27 A A 4 5(200012)

work items should be handed over. Although the

actor-oriented workflow definition has some
constraint in defining workflow, it is useful for the
define simple

Actually the

non-expert workflow designer to

workflow path dynamically.
actor-oriented process definition is adopted and well
suited to the decision approval support system. The
decision approval path can be determined at run
time by designating nodes in the path in the name
of actors or roles. Figure 3 shows the typical
workflow fragment types that can be defined in
ICU/COWS.

Lypes ‘ workflow fragments \

O—0—0—1]

sequential type

and-splil lype

o1-split type

Fig. 3 Three types of workflow fragments

In a connector-oriented workflow system,
structured data can be defined at run time similarly
to the workflow relevant data definition in a
standard workflow system. Once the data are
defined they are treated equivalently to the
workflow relevant data defined at build time.

3.2 Workflow processing in ICU/COWS

Workflows defined at run time are started by
generating a work item and then sending the work
item to the first workflow ‘\participants. The
processing of the work item after %he invocation of
the job is the same as the nermal workflows
defined at build time until it reach connectors. Once
the work item reach connectors, it is stored in‘ the
connectors. Thus the work items received from the
preceding departments are cumulated in the
connector of a department. For the processing of a
work item in the connector, it eitfler can be fetched

by the corresponding actor directly or forwarded to

AZERF Ay Aloflol e 4% F Za2AL o] +8& 617

the corresponding actors by the connector manager.

Generally, at least one connector manager is
assigned to the connector of a department. When
the corresponding actor can Dbe decided by the
system, the delivery service can be done
automatically by the system. Once a work item is
delivered to the corresponding actdr, he defines the
processing path by either selecting the appropriate
workflow template from the workflow template
storage and starts the workflow or creating a new
workflow template and registers the newly defined
workflow template hefore starting the workflow.
After the workflow fragment is defined, the process
is invoked automatically. This is a typical workflow
processing mechanism for a decision approval
support system which is very popular in several
oriental countries.

3.3 . Workflow fragments integration

Integration of the workflow fragments defined by
RTPD is very important for the success of the new
workflow paradigm. The integrated workflow and
“statistic data could be an impelling force to.BPR
and a good starting point of BPR at the same time.
Since the connector facility is devised for the
integration of the workflow fragments defined at
run time from the beginning, the integration of the
workflow fragments is rather straightforward in
ICU/COWS if the workflow fragments are one of
the types allowed in subsection 3.1. Figure 4 shows
the integrated form of the five(A, B, C, D, E)
workflow fragments. The integrated form is
obtained by connecting workflow fragments through
the intermediary of connectors. Before we explain
the procedure of the integration we introduce
workflow fragment description table. The table has
information for each workflow fragment.Workflow
fragment 1D, workflow instance ID, starting
connector, end connector list, way of split, merge
connector and the level of the workflow fragment
are registered in the table. Figure 5 shows the
contents of workflow fragment description table for
~ the five workflow fragments.
‘ we define

Before we explain the algorithm

following functions on the workflow fragments

C

-0-0
leveli) A

or, level2) R
A /@7 'O_’ i

H D Jeveltl) A
and H Tevelt2) B

[—

-

[t]

Fig. 4 Integrated form of 5 worldflow

fragments

denoted by WFig. Most of the functions can be
implemented easily once the workflow fragment
description table is given.

type(WFfg) :

workflow fragment.

returns the type of the parameter

level(WFfg) : returns the level of the parameter
workflow fragment. ,

highest_level(connector) : returns the highest level
of the workflow fragments merged into the
connector.)

lowest_level(connector) © returns the lowest level,
of the workflow fragments merged into the
cornector.

WE(connector) : returns, the workflow fragment
started from the input parameter connector.
start_connector(WF) : returns the start connector

of the input WF. ‘
end_connector({WF) : returns the end connector of
the sequential input WF. ‘
end_connector_list(WF) : retumns end connectors
list of the and-split or or-split input WF.
connect_connector(WF _process, connector)
connect WF_process and the input cornnector in
the form of tree.
connect_fragment(WF _process, WF) : connect
WUE _process and the input workflow fragment.
push(WFEfg) : pushes the parameter workflow
fragment WFfg into the workflow fragment
stack.
pop(WIYg) . pops the parameter workflow
fragment WFfg from the workflow fragment

stack and delete the top of the workflow

618 AR 8= A e o]et o] Al 27 ¥ Al 4 Z(2000.12)

fragment stack.

The process derivation from the workflow
fragments is composed of two stages. In the first
stage, the join links of each connector are
constructed. When multiple workflow fragments are
merged into a connector, the multiple input edges
are joined until the final join node is derived.
Roughly, for multiple input workflow fragments or
join nodes‘ in the same level and they have the
same split point, a join node is created so that the
workflow fragments are linked to the join node in
the second stage. If join nodes are included, the
join nodes and the newly generated join node are
connected. Next, the level of the newly created join
node is set to less than the connected join node by
1 and its appropriate split point is set. The split
point of a join node is searched by traversing
backwards wuntil it reaches to the workflow
fragment whose level is less than that of the join
node by 1. Thus the split point of the upper join
node of Figure 4 become A, because the level of
the join node is 1 and the level of workflow
fragment A is 0. This procedure is repeated until
the level of the created node is the same with the
lowest level of the input workflow fragments. Thus
after the execution we can obtain a join link tree
Workflow

connected to the join trees at the second stage.

for each connector. fragments are

Algorithm Resolve_Joinlinks(connector) shows the
procedure that a join link tree is produced for a
connector.

In the second stage, a workflow process is
constructed by connecting workflow fragments and

the join trees. The construction is started from the

A 1on A (L AND "

" Tan n « m or 1

« 10 «

» 16 »

v 10 1 '

Fig. 5 Workflow fragment description table

workflow fragments involving starting connector,

which is denoted in the workflow fragments
description table. In Figure 5, the starting connector
is denoted by underline. If the workflow fragments
are sequential type 1 connector is integrated with

the workflow fragment and if the workflow
fragments are and-split or or-split type multiple
connectors are connected with the workflow
fragment. Then the workflow {ragments started
from the attached connector are integrated. This
procedure is repeated until no more workflow
included. The

in the algorithm) is tested before

fragments can be included_
flag(include()
integrating a workflow fragment to prevent a
workflow fragment is integrated more than once.
This situation can happen when multiple workflow
connector. The

fragments are merged into a

algorithm is in Derive_Workflow().

Resolve_Joinlinks(connector)
Input: A connector.

Qutput: A join link tree for the connector.

level = highest_level(connector);
low = lowest_level(connector);
while(level = low) {
for all (fragments fg;, fg» ---fgn and join nodes
Ju Joedm

" partition the fragments and the join nodes into

& samelevel_fragments(level){

pari, pars -, pare such that each partition has
the same split point.
for all(partitions with multiple elements) {
create a join node J and link the
join nodes of the partition with J.
set the level of J to (level - 1).
decrease the value of level by 1.

Derive_Workflow()
Input: A set of workflow fragments having the
same workflow instance ID.

Output: A workflow process.

Aages wpel sl 49 5 meAs 49 S8 619

for all (connectors in the input workflow
(ragments)

resolve_joinlinks(connector);

WF_process =WF(starting_connector);
W _push(WI(starting_connector));
while ((current_fragment = WF_pop()) is

not empty){ ‘
if(typelcurrent_fragment) = “sequential”) {
connector = end_connector(current_fragment);
temp = WE(connector);
if(not included(temp)) {
WF _process =
onnect_connector{WE_process,
connector);
WFE_process =
connect_fragment(WFEF _process, temp);
set_included(temp);

WF_push(temp);

}
elsief(typelcurrent_fragment) =
“and-split” or “or-split”) {
connector_list =
end_connector_list(current_fragment);
while((conmector =
get_connector(connector_list))
is not empty){
temp = WF(connector);
if(not included(temp)) {
WF_process = ‘
connect_connector(WF_process,
connector);
WF_process =
connect_fragment(WF_process,
temp);
set_included(temp)
WF_push(temp);

4. Implementation

In this section, we introduce our distributed
object oriented workflow system and the
implementation of RTPD in the system. We call it
CBWS(Connector Based Workflow System) when it
accommodates RTPD and is equipped with
connector facility. In the implementation of CBWS,
we mainly focus on the implementation of RTPD.
The integration of induction module in the system
is descrihed also.

4.1 CBWS

Connector facility is one of special features to
support RTPD of workflow system. Thus connector
facility does not cover all the generic functions
workflow system is supposed to provide. In this
paper. we do not consider the rest of functions and
services of workflow systems should be provided
and we only explain the way of RTPD' is
implemented.

Connector facilittes and RTPD can be
implemented in several different ways. One is to
extend the functions and modules of conventional
workflow system. In that case, the hase workflow
system should be flexible enough to accommodate
the extensions easily.

The other way is to develop new workflow
system from scratch based on the concepts. The
ordinary functions and services are implemented
together during the development. But this approach
talkkes a lot of efforts until the service can be used.
Actually we choose the first approach because we
already have very flexible distributed object based
workflow system.

Meanwhile the connector facility can e
implemented relatively easily by modifying the
organizational inbox in a way. A work item arrived
at an and-joining point may has to wait another
corresponding work item to airive and is merged
into one work item to be delivered to an
appropriate actor. But for the support of RTPD,
more fundamental modification to workflow engine
is required. In the following section we hrieflv

introduce the base workflow system and its

620 AR 3} ere) =B cdolElH o)z Al 27 B A 4 T(200012)

extensions to accommodate RTPD.

4.2 |ICU/COWS
ICU/COWS is a distributed object oriented
workflow system developed in CORBA

environment. Each component of the system is in
the form of CORBA object and accessed through
CORBA naming services. The system has unique
features in that each workflow activity is controlled
by an object instance named TMI that is created
by specially devised mechanisms. So it can be
viewed instance based workflow system also.
Before we explain the mechanisms, we explain each
component of the system briefly.

ICU/COWS

Instance

The components of include
TMIF(Task Factory),
GTMIG(Global Task Managing Instance Generator),
Builder,

Service, and Worklist Handler. In the following

Managing

Simulator, Process Admin/Monitoring
sections, we describe the details of some core

modules and mechanisms. Figure 6 shows the
software architecture of ICU/COWS.

421 TMI and GTMI

Before we explain the TMI and GTMI(Global
Task Managing
ExecObject which is the abstract object for TMI
and GTMI object. ExecObject
common attributes, status information, and methods

for both TMI and GTMI objects. Operations to

Instance), we introduce the

is composed of

User Intei1face

Process Burlder Admimn/ Monitoring
Service
. T iR el Worklist
imulator e e Q Handler
™)
' TMIR/GTMIG
WS
(Workflow Transaction Service)

JDK1.2(CORBA)

Fig. 6 Software architecture of ICU/COWS

create, manage, and access to history information is
also included in the ExecObject methods.

TMI of an activity managing the task of the
activity is created from the TMI object. It either

sends a work item to a worklist handler or invokes

through application agent. In
and TMIL,

relays workflow relevant data via TMIL TMI also

an application

between application application agent

monitors the status of the invoked tasks by
communication with worklist handlers or application
agents. When a task is completed the TMI sends
the start event to the next TMI and the TMI
which receives the signal of the completion of its
former task starts its task. In this way, control is
transmitted as defined at process build time.

GTMI controls the processing of global process
instance from the creation of a process instance to
the end of the process instance. When all the TMIs
GTMI

the first

starts the

TMI.
status
TMIs

from the

are created [or the process,

process Instance by triggering

During the processing it either receives
TMIs or

handle the

reports from the suspends

transiently to requests

administrator such as dynamic reconfiguration.
Although a TMI has to report its status to its
GTMI, TMI can continue its execution even if the
GTMI crashes because it does not check whether
the GTMI has received its report or not. This
approach is effective to achieve ayaﬂability in a
distributed

disconnection

where the network
When the last TMI
reports its end of processing, the GTMI erases all

environment

is frequent.

the created TMIs and de-allocates spaces allocated
for the process instance including itself.
422 Generation and Working Mechanisms of TMI
and GTMI
A distributed server is
GTMIG and one or more TMIFs. When a client
asks GTMIG
GTMIG creates a GTMI for the process execution.
Once a GTMI is TMIFs to
generate all the TMIs for the process instance
through GTMIG. We call it setup phase of COWS.
Thus TMIs are generated initially

equipped with one

to generate a process instance,

created, it asks

when client
requests a new process instance.

When the request to start a process instance
from a client, GTMIG receives the request(1). Then
GTMIG determines the TMIF to create a GTMI(2,

92529 B Axglne] 2 F m2As o 48)

3, 4) and creates a GTMI(5) and TMIs. Once all
the TMIs are created, the GTMI asks the! first
TMI to start the work(6). If first task is user
interactive, TMI send a work item to worklist
handler. If it is automatic task, it invokes
application agent connected to application program.
When the end of the task is signaled to the first
TMI, it asks the second TMI to start its task(7).
When the last TMI is finished, it informs the
GTMI of its’

this process in sequence numbers.

work done(10). Figure 7 illustrates

Client(inttiator)
—
@ ®

s ——1
Emcess Definiti

‘Fig. 7 Sequences of TMI and GTMI creations

and operations

Since numerous TMIs are generated and the
TMIs may be created on different servers, it asks
the creation to the TMIF resident on the same site
as the generated TMIs. To the GTMI, local TMIFs
and remote TMIFs are viewed equivalently and
So the

workflow system operates in a fully distributed

they are invoked in the same way.
fashion. The site where a TMI is to be created is

determined either by the user directives or
considering the system configurations. When one
server is down, the GTMIG searches alternative
servers and uses the selected server on behalf . of
the crashed server. In this way, the whole system
can maintain high system availability irrespective of
a system failure.

4.3 RTPD Accommodation

43.1 Generic Views

‘To accommodate run time process definition
capability, a workflow management system should

provide several additional functions. First, it should

allow workflow fragments to be defined and
handled at run time and to be registered and
managed for later usage. This is disregarded or
overlooked in dynamic reconfiguration. Second,
WFMS should provide automatic integration and
visualization functions for workflow fragments.
Automatically integrated workflow processes can be
used for BPR by refining the processes. Third,
WEMS

generated by RTPD to he seamlessly integrated

should allow the process instances
with its monitoring and administration modules. For
instance, the workflow instances generated by the
RTPD facility can be monitored and managed in
the same way as the workflow instances generated
from the workflow templates defined at build time.
Fourth, the functions supplied at process build time
by a process modeling tool have to be provided in
a form adapted to run time process definition
appropriately. Fifth, the RTPD facility should be
connected to the run time client user interfacés and
can be invoked easily and interactively.

432 RTPD Accommodation in ICU/COWS

In this section we only focus on the extensions
of ICU/COWS to implement run time creation of
TMIs and GTMIs and to provide consistent handles
for managing and monitoring the workflow
processes. The other facilities can be implemented
relatively easily.

As the TMI and GTMI creation mechanisms are
very flexible and dynamic, only a few things need
to bhe changed for the accommodation. Once a
workflow fragment is defined by a participant then
it is handled in the same way as the ordinary
defined

fragment is saved somewhere in the database of

workflow templates. The workflow
workflow system and the corresponding TMIs and
GTMI are created using the mechanism described
in the section 4.2.2. Thus there is only one GTMI
for each workflow fragment.

This approach does not have any problem in
processing workflow fragments but it provokes
several problems when controlling and monitoring a
GTMIs are involved in

consisting of a whole process. Each GTMI should

whole process. Several

622 BRI =7 A ool A 27 A Al 4 F(2000.12)

be controlled separately and another service module
is required to provide the integrated view on the
process.

To resolve this problem we adopt the hierarchical
-structure of GTMIs. That is, GTMIs may have a
common upper level GTMI GTMIs of workflow
fragments composing a workflow process share the
same GTMI. We call the upper level GTMI Global
GTMI(GGTMI) and the lower level GTMI Local
GTMI(LGTMI). Figure 8 depicts this relation with
three workflow fragments. Here workflow fragment

may be considered as subprocess.

(@ cotmi
@© Lo

@® ™
O Activity

Workflow Fragment

Fig. 8 GTMI hierachy

To implement the hierarchical structure of
GTMIs, we slightly extend the creating mechanism
of GTML

instance of the first workflow fragment composing

When the creation of a workflow
a workflow process is requested, two GTMIs are
created. One is GGTMI and the other is LGTMI
After the GGTMI is

workflow instances of other workflow fragments is

created, the creation of
conducted by creating LGTMIs and registering the
corresponding GGTMI to LGTMI and vice versa. In
monitoring service, we can refer to the GGTMI for
GGTMI
reports the situation by asking and integrating the

the monitoring of a process situation.

local situations of all the active LGTMIs.

4.4 Integration of Workflow Model Induction
Module

To utilize the functions of the workflow model

induction, the workflow induction module has to be

based workflow

integrated with the connector

system and process modeling tool. The connector

based workflow system provides interfaces to
define workflow fragments at run time, and collects
the defined workflow fragments into the workflow
table. Workflow

and workflow

fragments instance integration

module model induction module
create workflow templates and store them at the
workflow template table which is connected with
the process modeling tool.

Process designers or BPR experts refer to the
induced workflow model in designing workflow
models via the process modeling tool directly. They
can just modify it in designing a workflow model
rather to draw it from the scratch. Figure 9 shows
the connections among them. The connector based
workflow system in the Figure represents the one
implemented by extending our connector-oriented
workflow system [5]. The process modeling tool is
also extended to provide interfaces to access the
induced workflow models. The numbers in the
circle denote the procedure from the definition of
the workflow fragments to the reference by the
process designers or BPR experts of the induced

workflow models.

Workllow Parlcipimts

2 % L BB
@
o e
. L
W .
Workflow Modef
Tndustion Module]

Fig. 9

Pincess Designer/BPR Expert

|~
Business Process
Madelg Tool

Connections workflow

among

management system, induction

modules and process modeling

tool
5. Application

In this section, we explain how the run time
process definition can be applied to the following
situations. We assume that during the workflow

execution of Figure 10(a), the participant of the

Jazss @ AzdaAe] A4 & Z2Ax Ao 545 623.

production decision activity has found that. the
decision of production should be approved by other
departments as well as his department. Thus the
participant has to define new approval path at run
time. Figure 10(b) shows how the procedure is
ICU/COWS. Firstly

defines the approval path from the participant to

handled in the participant
the head of the department via his senior member
as shown

in the department-A block in Figure 10(b). Note
that the last nodes of the definition should be the
connectors of his or other departments. After the
approval path is defined he starts the work item

along the approval path.

@D—ED— G —ED—E

(a) Original business flow defined at build time

3¢ pustment-BeA,) ey CiManl

E—@—-E @

(b) Combined business flow defined at compile and

run time

Fig. 10 Application of the connector-oriented

workflow system to an example

workflow application

Once the approval process of the participant’ s
department is completed the work item is delivered
to the comnectors of the designated departments.
The delivered work item is pushed to the

appropriate person in the department by the
connector manager of the department or pulled by
the person directly. Once the work item is delivered
to the corresponding person, the same steps as
those the participant of department-A has taken are
taken. Note that, if the department is a manual
department, the work item might be processed
manually and the work item is delivered to the
connector of the target department through e-mail.

Thus the connector should be registered as an

entry of an e-mail system and the e-mail inbox be
integrated in the connector.
After all the

through

approvals have been received

the newly defined approval paths, the

participant of the activity of the production decision

can continue the workflow process as defined.
Consequently, in Figure 10 we showed how the
predefined workflow and the newly defined

workflow defined at run time can be integrated in
connector-oriented workflow system in the mixed

situation of automated and manual departments.

6. Related Works

Although numerous works{1]{2][10][26] have

heen done on adaptive workflow management

systems, relatively few works have heen performed

on automatic induction of workflow models based

on the notion of run time process definition.
Kradolfer[25] offers a method for dynamic
workflow evalution. It supports modification of

workflow definitions with versoning - and
classification of modification operations. It can keep
the modification history and migrate an workflow
instance to a modified workflow definition.

However, It differs from the proposed approach
in that it does not consider the discovery of
workflow process from modified definitions. ADE
PTflex[14] presents a formal foundation supporting
dynamic structured changes of running workflow
instance. It considers neither schema evolution nor
process induction. ADEPTflex allows modification
of running workflow instance while it keeps
correctness and consistency criteria.

Agrawal[14]

the history of workflow instances while we induce

induces an workflow model from
a workflow instance from a set of workflow
fragments. A machine learning approach to acquire
a workflow model is used in RAP[15] and Herbst
[15]1[18] [19]. RAP uses dialog-based learning to
induce a workflow model by observing structured
e-mails. IHerbst proposes to integrate a machine
learning component into a workflow management
system by extending hidden markov models[20][22].

They define four problem classes according fo the

624 AR SR o] o] 2 A 27 A Al 4 Z(2000.12)

characteristics of the target a workflow model. But
the unit of a workflow instance is too primitive to
induce complete workflow model. Wolf[27] proposes
an event—data analysis framework for process
discovery called Balboa. Balboa analyzes the event
data collected from executing processes to find
behavioral patterns of processes. It uses three
methods for process discovery that are included in
the algorithmic technology or statistical technology
called KTail, RNet Although the

method is developed in different context from

and Markov.

workflow area, it pursues the same goal and the
technique can be utilized in automatic induction of
workflow models. But the kind of events and the
ways of event catching should be changed
appropriatly to be applied in workflow context.

The idea of the utilization of organizational
member’s behavior in workflow process induction
can be found in [23], [28] and [29]. Although we
share the idea with them to some degree, our work
differs in that the integration of organizational
learning and workflow management system is very
important for the real success of workflow
management systems. WorkBrain[23] introduces an
approach for an evolutionary organizational memory
based workflow system. The system uses work
cases of organizational memory to find a business
process. It supports various operations for building
workflow management tasks. Users can modify
workflow instances and WorkBrain saves these
changes which will be used later to create a new
WorkBrain

differs from the proposed approach in that it does

workflow building block by users.
not describe a concrete algorithm to derive a new

process from workcases.

7. Conclusion

Many workflows of large scale enterprise is still
in non-automated state. This is partly because of
weak intention of top managers but the restricted
capability of conventional workflow management
system is also another critical hindrance for the
automation. Usually the workflows of large scale

enterprise are in the mixed type of workflows and

the run time process definition is very important
for them to be processed automatically. Although
facility of conventional

dynamic reconfiguration

workflow management system can " cover some
situation, it has limitation to fully support run time
process definition.
Meanwhile in the conventional workflow
paradigm, the whole workflow should be defined
before it to be executed. But for a workflow
system to cover much wider area of workflow, the
new workflow paradigm in which a workflow can
be started after only a part of workflow is defined
should be supported by workflow management
system. The undefined part of workflows could be
defined at run time appropriately according to

situations. Thus we can expect much wider
coverage of workflows by workflow management
system equipped with run time process definition
Which is

workflow management system should support run

facilities. another background that
time process definition.

In this paper we have proposed the connector
facility as an implementation method of run time
process definition for workflow management
system. Three types of workflow fragments are
allowed for the definition at run time. We showed
a workflow can be derived automatically once
workflow fragments in the form of aforementioned
three types are given and the algorithm of deriving
a workflow from workflow fragments are
illustrated. This implies that workflow management
system is merely not the means to automate
processes defined through BPR. Rather it can be
used also in the early stage of BPR in which even
process is not defined at all to help to derive
current processes. Which can diminish the cost of
BPR drastically and makes the transition from
non-automated state of a company to fully
automated state smooth. This is because the usage
of run time process definition of workflow
management system could be a intermediary state
between non-automated state and fully automated
state of a company.

During the integration of the connector facility to

JaE2 S el Azdelxel 43

ICU/COWS where TMI is in the form of object
instance and a GTMI controls all the TMIs of a
workflow instance, we have found the architecture
of ICU/COWS is very flexible. We can create the

TMIs at run time easily and we can treat both the

TMIs created at build time and run time in the

same manner once they share the same GTMI.

(1]

[2]

[5]

[8

[9]

[10]

[11]

[12]

References

P. Lawrence. Workflow HandBook. John Wiley &
Sons Ltd. (1997).

L. TFischer.The Workflow
Strategies, Inc. (1996).
ORBWork: A Distributed CORBA-based Engine
for the METEOR Wok(low Management System.

Paradigm. Future

University of Georgia, Athens, GA,
http://LSDIS.cs.uga.edu/.
C. Ellis, C. Maltzahn. Chautauqua: A Flexible

Work{low System. Proc. of the 30th HICSS
Conference, (January. 1997).

D. S. Han, J. Y. Shim, C. S. Yu. ICU/COWS: A
Distributed Transactional ~ Workflow — System
Supporting Multiple Workflow Types. IEICE
Transactions on Information and Systems Vol
E83-D, No. 7, July 2000.

Nortel & University of Newcastle upon Tyne.
Workflow Management Facility Specification
Revised Submission, OMG Document Number:
bom/98-03-01 (1998).

Workflow Management Coalition
Document. The Workflow Reference
Version 1.1 (November 1994).

Joint Submitters. Workflow Management Facility.
Revised Submission, OMG Document Number:
bom/98-06-07, July 4, 1998.

7. Yang and K. Duddy. CORBA: A Platform for
Distributed Object Computing. ACM Operating

Specification
Model.

" System Review, Vol. 30, No. 2. Pages 4-31 (1996).

D. Georgakopoulos, M. Hornick, A. Steth. An
Overview of Workflow Management: From
Process Modeling to Workflow Automation
Infrastructure. Distributed Parallel Databases,
Klewer Academic Publishers, Volume 3, Number
2, pp. 119-154 (1995).

C. Ellis, K. Keddara, G. Rozenberg. Dynamic
Change within Workflow Systems. Proceedings of
the ACM SIGOIS Conference on Organizational

Computing Systems, Milpitas, CA., pp. 10-21
(1995).
M. Reichert, P. Dadam. A Framework for

[13]

[14]

[15]

[16]

[17]

(18

[19]

[20]

[21]

(23]

Z 2 s A 54 625

Dynamic Changes in Workflow Management
System. Proceeding of DEXA'97 (1997).

M. Reichert' and P. Dadam. ADEPT{lex -
Supporting Dynamic Changes of Workflows
Without ‘Loosing Control. Journal of Intelligent

Information Systems 10(2), 1998

R. Agrawal, D. Dunopulos. F. Leymann. Mining
Process Models from Workflow Logs, In Proc. of
the 6th International Conference on Extending
Database Technology(EDBT), 1998.:

S. Bocionek, T. M. Mitchell. Office Automation
Systems that are Programmed by their Users. In
23. Jahrestagung der Gesellshaft fur Informatik,
pp. 214-219, - Berlin, 1993, Springer—
Verlag.

Clarence A. Ellis, Keddara K, Rozenberg G.
Dynamic Change within Workflow Systems. In
Proc. of the ACM Conference on Organizational
Computing Systems, pp. 10-21, 1995.
Y. Han, A. Sheth. On Adaptive
Modeling. In' Proc. of the 4th
Conference on Information Systems Analysis and
Synthesis, pp. 108-116, Orlando, Florida, 1998.

J. Herbst, D. Karagiannis. Integrating Machine
Learning and Workflow Management to Supbort
Acquisition and Adaptation of Workflow Models.
In: Proc. of the 9th International Workshop on
Database and Expert Systems Applications, pp.
745-752, IEEE, 1998.

J. Herbst, D. Karagiannis. An Inductive Approach
to the Acquisition and Adaptation of Workflow
Models. In Proc. of the IJCAI'99 Workshop on
Intelligent Workflow and Process: Management,
Stockholm, Sweden, 1999,

L. R. Rabiner. A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. In Proc. of IEEE, 77(2):257-285, 1989.
S. K. Shrivastava and S.M. Wheater. Architectural
Support for Dynamic Reconfiguration of Large
Scale Distributed Application. The 4th
International Conference on Configurable Distri-
buted Systems(CDS’'98), Annapolis, Maryland,
USA, May 4-6, 1998.

Germany, '

Workflow
Internationat

A. Stolcke, S. Omohundro. Best-First Model
Merging for Hidden Markov Model Induction.
Technical Report, TR-94-003, International

Computer Science Institute(ICSI), 1994.

C. Wargitsch. WorkBrain: Merging Organizational
Memory and Workflow Management Systems. In
Workshop of Knowledge Based Systems for
Knowledge Management in Enterprises at the 21st
annual German Conference on AIKI-97), pp.
214-219, Kaiserslautern, Germany, 1997

626 ARt E] =5 v o] elEl o] & Al 27 F Al 4 Z(2000.12)

[24] W. M. P. van der Aalst, T. Basten, H. Verbeek,
P. Verkoulen, M. Voorhoeve. Adaptive Workflow:
On the Interplay between Flexibility and Support.
In J. Filipe and J. Cordeiro(editors), Proc. of the
I1st International Conference on Enterprise
Information Systems, pp. 353-360, Setubal,
Portugal, 1999.

[25] Markus Kradolfer, Andreas Geppert. Dynamic

Workflow Schema Evolution Based on Workflow

Type Versioning and Workflow Migration.

Proceedings of Fourth IECIS International Conference

on Cooperative Information Systems, pp.104-114,

Edinburgh, Scotland, 2-4 September, 1999

Amit Sheth, From Contemporary Workflow

Process Automation to Adaptive and Dynamic

Work Activity Coordination and Collaboration.

Proc. Workshop on. Workflows inScientific and

Engineering Applications, IEEE Computer Soc.

Press, Los Alamitos, Calif., 1997

[27] Jonathan E. Cook and Alexander L. Wolf.
Discovery and Validation of Processes. NSF
Workshop on Workflow and Process Automation
in Information Systems, Athens, Georgia, May
1996.

{28] Mark S. Ackermann. Augmenting the
Organizational Memory: A TField Study of Answer
Garden. Proceedings ACM Conference on
Computer Supported Cooperative Work, Chapel Hil,
October, 1994

[29] M. Berger, E. Ellmer, D. Mecrkl. A Learning
Component for Workflow Manangement Systems.
Proc. 31st Annual Hawaii International Conference
on System Sciences(HICSS-31).

[26

%5
ARAIH=EA : v o]ehol 2
A2rAA2 Iz F=

=
ARSI EEA : Ho]eho] 2
2

3 #A=x

