A Study on Dynamic Inference for a Knowlege-Based System iwht Fuzzy Production Rules

  • Published : 2000.12.01

Abstract

A knowledge-based with production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a method to reflect the dynamic nature of a system when we make inferences with a knowledge-based system. This paper suggests a strategy of dynamic inference that can be used to take into account the dynamic behavior of decision-making with the knowledge-based system consisted of fuzzy production rules. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by the AHP(Analytic Hierarchy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with the Min operator, into a single DM for the rule. In this way, the importance of attributes of a rule, which can be changed from time to time, can be reflected in an inference with fuzzy production systems.

Keywords