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Exponential Stability of the PDAF with a Modified
Riccati Equation in a Cluttered Environment

Yong-Shik Kim and Keum-Shik Hong

Abstract: The probabilistic data association filter (PDAF) is known to provide better tracking performance than the standard Kalman
filter (KF) in a cluttered environment. In this paper, the stability of the PDAF of Fortmann et al. [7], in the presence of uncertainties
with regard to the origin of measurement, is investigated. The modified Riccati equation derived by approximating two random terms
with their expectations is used to prove the stability of the PDAF. A new Lyapunov function based approach, which is different from
the quantitative evaluation of Li and Bar-Shalom [17], is pursued. With the assumption that the system and observation noises are

bounded, specific tracking error bounds are established.
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L Introduction

The target tracking problem refers to the process of estimat-
ing the state of a target using a set of measurements associated
with the target. In a cluttered environment, a measurement
may have been originated from any one of the following: the
target of interest, interfering objects, clutter, countermeasures,
or false alarms in the detection process. The uncertainty with
regard to the origin of a measurement makes the tracking
problem much more difficult than a regular estimation prob-
lem. Accordingly, how to overcome, or manifest, the vague-
ness of the origins of data, which is referred to as a data asso-
ciation problem, is the crux of a tracking problem. A typical
algorithm in this category is the probabilistic data association
filter (PDAF) [1]{2][51[71[14][17]. The first work on the
PDAF, which is more complex than the standard KF [8][13],
was originally introduced by Bar-Shalom and Tse in 1975 [1].

While the PDAF has demonstrated a good tracking per-
formance in the presence of uncertainties, neither the stability
proof nor the convergence analysis of the PDAF has been
completed yet. On the other hand, the stability and the conver-
gence analyses of the KF algorithms for nonlinear and/or time-
varying systems are still widely investigated in the literature
[41[10}-[12][18]{19][21]. For linear systems, the standard
Riccati equation leads to the stability of the KF, provided ap-
propriate controllability and observability conditions hold [8]
[13] and the KF’s prediction covariance always converges in
the steady state.

A PDAF algorithm was introduced by Fortmann et al. [7],
in which a deterministic Riccati equation, as an approximate
propagation of the average covariance matrix, was derived by
replacing the random terms in the original equation with their
expectations over all possible validated measurements. The
stability of the tracking algorithm in [7] depends critically on
the detection and false alarm probabilities. It is apparent from
their work that the modified Riccati equation, which consists
of target detection probability and false alarm probability,
converges to the steady-state covariance in most cases. How-
ever, the existence of a region in which the equation diverges
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is also apparent. Therefore, the stability issue of the PDAF
was not answered completely. Moreover, the approach in [7]
may not be suitable for tracking in a heavily cluttered envi-
ronment.

Li and Bar-Shalom [17] introduced another PDAF. The ap-
proach of [17] is hybrid in the sense that a continuous-valued
covariance matrix, as a function of a discrete-valued random
variable, is used to characterize the performance of the algo-
rithm considered. The covariance matrix is calculated off-line
recursively using the modified Riccati equation, which is de-
rived by replacing the measurement-dependent terms of the
original stochastic Riccati equation with their conditional ex-
pectations evaluated only over possible locations of measure-
ments in the validation region. The dependence of the covari-
ance matrix on the number of validated measurements, a dis-
crete-valued random variable, is retained after the expectation
operation. The approach of [17] has the merit that it yields a
quantification of the transients of tracking divergence as well
as substantially better accuracy than the approach of [7].
However, an analytic proof of the stability and the bounded-
ness of the tracking error in a heavily cluttered environment
are not yet provided in [17]. This paper is basically motivated
by the lack of a stability proof of the PDAF.

The exponential stability of the linear Kalman filter for es-
timating time-varying parameters of a linear regression model,
in which the regressors are stochastic and nonstationary, was
investigated in [10]. The conditions and techniques used in
[10] are different from the traditional ones in the areas of sys-
tem identification and adaptive signal processing. In this paper,
the approach of [10] is utilized in proving the stability of the
PDAF with a modified Riccati equation.

The main contributions of this paper are: The stability of the
PDAF algorithm with a modified Riccati equation for estimat-
ing the state of stochastic dynamic model, in the presence of
uncertainties of the measurement origin, is investigated. It is
shown that if the observation sequence belongs to a gate o -
algebra (defined in Section III), the information reduction
factor is chosen adequately between O and 1, and the system
and observation noises are bounded, then the stability of the
modified PDAF is guaranteed. A new approach based on a
Lyapunov function, which is different from the quantitative
evaluation in [17], is proposed. Finally, specific tracking error
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bounds for given bounds of the system and observation noises
are established.

This paper is organized as follows:

In Section II, the standard Kalman filter algorithm and the
modified PDAF algorithm are compared. The problem formu-
lation is provided in Section III. The main stability analysis is
carried out in Section IV. In Section V, conclusions are stated.

I1. KF vs PDAF with a modified Riccati equation

To enhance understanding of the issues of this paper, the
standard KF and the PDAF with a modified Riccati equation
are compared in this section. Consider the following state-
space representation of the target motion and observation:

X1 = Fyxp +@p, k20, Q.1
ye=Hpx +vy, k21, 22)

where x, € RY and Yi € R® are the state and observation
vectors, respectively, w; and v; are mutually uncorrelated
white Gaussian noise vectors with zero mean and covariances
Q and R, respectively, and F, and H; are assumed to
be known time-varying system and observation matrices. Ini-
tial state xy is assumed to be Gaussian and uncorrelated with
the system and observation noises @, and v, .Itis assumed
that system (2-1) and (2-2) is uniformly completely observable,
see [13, p.232] or [4][18]]19] for the definition of the uniform
complete observability.

The two algorithms are now summarized as follows:
1. KF algorithm [13, p.200]
The state estimate equation for (2.1)-(2.2) is

ik!k—l = Fk—l’ek_llk_l s 2.3)
f‘k[k = ik|k—1 + K (v = ka‘k|k_1) , 2.4)

where ’A‘k|k—1 is the state estimate at time k condi}ioned on
measurement data up to time k-1 ; Kkszlk_lH,:
[R+HF,), H{T" is the KF gain matrix at time k. The
associated covariance equation is

B1 = FearB 1 Fea v 2., (2.5)
P = Pje1 — K SiK'e - 2.6)

where Pklk—l is the covariance matrix of the state error
77k]k-1=xk —iklk_h; Sy is the covariance matrix of the in-
novation term 7 =y, —kacklk_l .
2. PDAF Falgorithm with a modified Riccati equation

{2, p.213]

The state estimate equation is
Xek-1=Fr % k-1 2.7
;Cklk = iklk—l + K Briyei —H kfklk_l) , (2.8)

where K; takes the same form as the KF gain matrix in
(2.4); By is the a posterior probability for y; to be tar-
get-originated, where y;; is the i-th validated measure-

ment at time & . The modified Riccati equation, which corre-
sponds to the covariance equation of the KF, is

Beet = FeaPop1Fea + 2., 2.9)
B = Pifp—1 — 92K SiK (2.10)

where S, inA(2.10) is the covariance matrix of the innova-
tion term 1) =Zi§="1 Br.iOni—HiXyy) s & is the number
of validated measurements at time k ; g, is the information
reduction factor to be defined in Section III next, see [2, 7].

Remark 1: (2.9)-(2.10) are deterministically approximated
prediction and update equations of the covariance matrix,
which utilize the averaged covariance matrix obtained by re-
placing random terms of the PDAF with their expectations
over all possible validated measurements.

I11. Problem formulation

In many tracking problems, uncertainties in the target mo-
tion and in the measured values are usually modeled as addi-
tive random noises. The covariance matrices of the process
and measurement noises specify the uncertainties in target
motion and measured values, respectively. In practice, when
tracking a target in clutter, however, more than one measure-
ment are possibly available at any time step, and therefore the
optimal estimate does not hold anymore unless a correct and
complete target-observation assignment is accomplished at
each time step. In this situation, the tracking performance
depends not only upon the noise covariance but also upon the
amount of uncertainty in measurement origin. This depend-
ence is characterized in terms of the probabilities of detection
and false alarm. The dependence of error covariance upon the
detection and false alarm probabilities is explicitly character-
ized by a scalar parameter ¢, in the modified Riccati equa-
tion.

Consider the PDAF with a modified Riccati equation (2.7)-
(2.10) for estimating the state of (2.1)-(2.2) in the following
form:

S =R + B o Hs BHyg +RT Zi"f Bensi Ok ~HeaFii)

“ 1 o
=F +BBH qHeaBHiy R Ok —Hen B,
3.1

’ ’ -1 ’
Py = Fy P Fy ~u Fy P H iy [R+ Hy Py Hy g 17 Hy o B +Q,
3.2)

_~¢ : . .
where yg1 =275 Bey1iVi+1i » B is a symmetric posi

tive definite matrix, and R and @ are positive definite
matrices. R and @ may be regarded as a priori estimates
for the variances of v, and w; , respectively.

The following notation and terminology are introduced: For
amatrix X, Ap(X) and Ay, (X) denote the maximum
and mjnimum eigenvalues of X and the induced norm is
Il X =/ Apnax (XX") , where ’ denotes the transposition.

Regarding the PDAF algorithm with a modified Riccati
equation, let Y, denote the cumulative observation sequence
set consisting of all measurements up to time k such that
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—-{Z Y, l} j=1 - First, assume that the true measurement
at time k+1, conditioned upon Y¥, is normally distributed,
ie.,

PLyest \Y¥1= Nypsrs He o Fa i Sean ]

A region in the measurement space, where the measurement
will have some (high) probability, is defined as follows:

7\*“(%) =W : D —HinFs X ISk_+l B —HuF 31 <23
= * TS5 k+lnk+1 <x}

where ) is a threshold parameter to be selected beforehand
and 7 is the innovation term [2]. The region defined above
is called the validation region or the gate. It is an ellipse of
minimum volume. Related to a validation region, the follow-
ing definition is introduced.

Definition 1: A o -algebra on an abstract set © is a
collection of subsets of © which contains the null set ¢
and is closed under countable set operations. If the set ©
assumes values in a certain validation region or a gate, it is
particularly called a gate o -algebra.

In the PDAF it is assumed that the correct measurement is
detected with probability Pp and that all other measure-
ments are Poisson-distributed with parameter C,V, , where
V, is the volume of the validation gate and C; is the ex-
pected number of false measurements per unit volume [2, 7,
17]. Also, the information reduction factor g, depends upon
the probabilities of detection and false alarm, and also upon
the volume of the data association gate as follows:

g2 = q2(Pp, CsVy) .

The following assumptions are now made.
A1: Assume that there exists a constant 4 >0 and an in-
teger h>0 such that

m)HFZH;JIMZ | 8,128, dmost suely, Wm0
=t HIH,

which S,,_; is the gate O -algebra generated by
(o5 Ymn-1}-

A2: {v;,®;} is random or deterministic process satisfying

c =supE v "+ 1" 3,1} <oo, forsomer >4,
r k k k-1

I i

+liey H'} < oo, almost surely.

Hy —hmsup—zk O{H Vi

n—yco
A3: The observation sequence y; belongs to a gate o -

algebra and the information reduction factor ¢, is chosen
adequately assumes a value between O and 1.

Remark 2: Assumption A1 assures the observability of the
system considered. Assumption A2 characterizes the system
and observation noises. Assumptions Al and A2 are adopted
from [10], see also [22] or [9, p. 372-374]. Note that assump-
tion Al is weaker than the uniform complete observability
condition [20]{22]} because an upper bound is not required.
Finally, assumption A3 characterizes the uncertainty of meas-
urement origin.

Remark 3: It is known that if the noises {w;,v,} is white

Gaussian and assumption A3 holds, then X, generated by
(3.1) and (3.2) is the best estimate for X with estimation

error covariance B, [2][10], i.e.,let X =x; — Xy , then
% = Elx[Sr-1), P = EI% %Sk (3.3)

provided Efeoy 13;_11= Elv, 18411=0, O = E[@; 0 1 351,
R=Evv;13,], % =Elx] and PBy=E[%i] , in
which S,_; is the gate o -algebra generated by
{05 Y1} -

The main theorem of this paper is now stated. In Section IV,
it will be shown that the above conditions are the best possible.

Theorem 1: Let assumptions A1-A3 hold. Then, for {x;}
given by (3.1)-(3.2),

1) limsupEll %, —x, I*< Cyg5{0, 1" , and

R

2) limsup— 2 & —x; 12 Cy(a0) a5

n—yeo

almost surely , where o,,u, and r are defined in assump-
tion A2, and g, is an information reduction factor intro-
ducedin A3. C; and C, are deterministic constants.

Remark 4: Theorem 1 asserts that the stability of the PDAF
with a modified Riccati equation is guaranteed if the system is
uniformly completely observable, the process and observation
noises are bounded, and all the measurements in a cluttered
environment belong to a validation region established in the
detector. It is known that the PDATF, in a cluttered environment,
shows better tracking performance than the standard Kalman
filter. This is because the uncertainty of the measurement ori-
gin can be adjusted by introducing ¢, .

IV. Main results: Stability proof
Before proving Theorem 1 above, the following lemmas are
stated:
Lemma 1: Let Q =FRF - RH,, (H RH,,+R"
H MPF Let ¥, ; be the transition matrix associated with

{Fk},_, [15, 16] such that
Vi =F Yo = =Fy - FY,, W=1, Vk-12i20.

it

Let assumption A3 hold. Then, for any integers m=2>0,
h>0, and ke[mh,(m+1)k], where k is an arbitrary but
fixed integer which breaks the time axis into blocks of length
h , the following inequality holds:

Q) St (M) = tr{gaT o FCHly (R+ i DyiHia) ™ Hiat Fi}
+0((IT;,)+0()

A
where T, =¥yt miBrn Eoms st mn and

k=mhth+l ,
=M+ Y o Yeot,mh @Yt mh -

Proof: First of all, note that Q, is positive semi-definite
forall k20,ie,

’ ’ ’ -1 ’
O =F P Fy—q:Fy B Hy y(R+Hy B Hy ) Hy P Fy



238 ICASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 2, No. 4, December, 2000

=[(FAF)" +(H, . F'Y{(q
+ qle}—l H Fe r'zo

- 1)HI:+1PkHI:+1

4.1)

where the matrix inversion formula has been used to drive the
second equality. The covariance equation of the PDAF with a
modified Riccati equation of (3.2) at time % is

-1
B, =B Fi ~ 9P B Hy R+ H Py H}) ™ Hy By Fiy +Q
< F P Fra +Q
S Py Fya P g Fy o Fy oy + Fi OF 4 +Q

S FFrop - FFgRFgF - F o F{ + Q+ F  QF | +
+Fy 1 Fy - R QFgF -+ Fy o Fy .

Now, to simplify the above expression, the state transition
matrix @, ; defined in the statement of Lemma 1 is utilized
as follows:

P S 0PoWr o + Wik Ok + Ve k1 @k g+ + Pr 0¥ 0

A
4 k 4
=¥ 0P Wio+ Do Vri Q¥
And therefore

’ ’ k+1 ’
FePF <YW 0P hs10 + g Ve, OFh1i-

In particular, for any & e [mh, (m+1)h]

7’
FyPeF{ < Foppen Fopnint ** Franst Fost s Foan Frat - Pt Fyaiea
k=mh+h+] ’
Xt Vot mh @Vt i
A
_ k=mh+h+1 ’
=+ 3y Yectmh @kt mi
A
=1 mn-
4.2)

Now, for matrices L and X such that 0SL< X, the
following inequalities holds:

< o[LX1< (XY .
Hence, by (4.2), (3.1) and (3.2) we have

r{ QR =1 L{(F P )™ + (Ha F Y {@2 ~DH i PeH iy
+q5 RY ' (Hpn FTHY' T
<tr{{ T + (Hen F Y (@2 = DH e PHin + 3 ' RY
(HeaFgON
= tr{{ Tph + (H 7Y {(‘12 ~DH P Hi +43'RY!
(He FOOY T + (Hyn F Y {07 - D)
HygPoHip + 7 RY (Hpn FEOY P
=t{ Ty + (Hy 1 Fe VUG5 - DH, B H oy + 45 ' RY!
H e FEOY T — 2F T H o
(Hys T H st + R Hi o D Fr 1
St {Tph + (H 1 Fe Y (g2 —~DH (P H iy +q7 RY!
(Hyen BT

= trl To (T = 02 Fi o H st H g Do H + B
“Hypuly, th}]
<tr(Tp )=~ 11{q3 T P Doy H st (H i D Hiy + B
“Hy i Dpn Fr )
4.3)
Now, the following inequality is claimed:

3 ’ ’ -1 ’
tr{ g B U Hj i (H e (U Hi 1 + R Hy U}

~tr{ga T Fy Hy st (H g D H i1 + R Hy 1 F )20,
4.4)

(4.4) can be easily shown by using Lemma 1.7 and Lemma
1.10 of [6] The first term of (4.4) can be rewritten as follows:

32

DT BT H it (Hi Do Hg + R Hy T F{To }
< gytr( Ff,ffl"iff) tr( FL, U F, ) ir{ Hy (H T, Hy + R)" Hy,}
< gytr( r?,,;.) tr( FkrfnhF}c, ) r{ Hl,m (Hk+1rth;+1 +RY” H, .}
Sqr( D ) (T2 ) er( FF, )y er(Hy, (H,, T H,+R'H,,}.
Similarly, the second term of (4.4) can be rewritten as follows:
Gt To F H oy (M D H g + R Hi KT, /h }

2

< gotr(TI2T2) tr( FFL ) tr{ Hipg (H i D H it + R ™ Hyay

< qotr(Top) tr( Fy F ) tr{ Hi oy (H Dy H g + R) ™ H iy ).
Since the Holder inequality such that
r{X*ur X< r 0}, b2 1
holds for any b -dimensional nonnegative definite matrix X ,
r(Topr(T2,) <tr(T3,) by taking b=1, Hence (4.4) is
obtained. Therefore, by substituting (4.4) into (4.3), the fol-
lowing inequality is derived.
4 -1
11O T =1y Vol 1 Pl 4 Dol 1+ Ry 1)
4.5)

Now, by applying the Holder’s inequality, the first term in

the right hand side of (4.5) can be written as [10]

(T2, y=tr(I15,) + O@er(IL,)) + OQ1). 4.6)
Consequently, by substituting (4.6) into (4.5), the assertion of
Lemma 1 is obtained. n

The result of Lemma 1 will be used in proving Lemma 2
next. To guarantee the stability of a stochastic system, the
stability of moments as well as a sample should be assured.
Now let’s prove the boundedness of fourth-order moment of
the state error covariance.

Lemma 2: Under assumptions Al and A3,

SupE Il P, 1*< oo,
k

A
Proof: First, define that Tmzz;("f(—,:’_l)h tr(Pk+1) ,

m21. Then, by (3.2), Lemma 1, and Holder’s 1nequa11ty we
have

(m+1)h-1 (m+1)r-1
Tpu= 3 tr(Php)= ﬁh r(Q +O)*
k=mh k=mh
(m+DHh-1
< Y @)+ 0w @)+ oM}
k=mh
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=htr(T%, )+ 0113, )+ 0()

(m+1)h-1 S .
~ Y, @ TonFiHip (R4 Hy U Hiy)
k=mh
“HypgF}
= her(TT4, )+ Oer(I13,, ) + OQ)
; mpa .
— @l Y, FiHpy(R+HyyUppHiy)
k=mh
“HinFr}

< her(TIk, )+ 0@ (T3, )+ O(1)

B s R FiHiHy Fy
qrtrylpn 2 P
i MR+ Ay (o )} 1+ 1 Hp g 12)1

S hir(ITh), )+ OGr(IT2,)) +O(l)

_ 92 P 1—~5h _(m+1)h_l FyHpHy Fy )
WR+Amax (T ) | ™ 1S (1 H oy 1)
@.7)

Thus, by taking conditional expectations and using Holder
inequality,
ET, .|8,401<h (I, )+ O@r( I, ))+0(1)
-— B
TR+, (T O

- : A
TS, By STk g
& HIH

g0

I R+ Ay (Cyy )
g0 t(T,;)

d* N R+ Ay (D)
@S hIQI

d*(LRI+R1I Q1N

<her(IT3 5 )+ 0Gr(IL,, )+ O — tr(Top)

< htr(TI, )+ O0@r(TL ) +O0() - (T

< htr(TTh, )+ 0(r(T12,, )+ 0() - (114 ,)

=1- Q26”Q"
d*(IRI+RIIQI)

}ntr(n;‘nh Y+ 0(r (I3, )+ 0x).

(4.8)
In addition, it is evident from (3.2) and Holder inequality that

mh—1
Rir(Tgy )= Y, ir(TT4,)
k=(m-1)h
mh-1

; 4
< 2P + P 2mhoho1—k iy @Y 2tk 1))}
k=(m—T)h

mh—1
<T, + o[ Y tr(P,3+1>]+ o)

k=(m-Dh
<T,, +0(T,)Y*) +0)

h1 3/4

b~

since (Tm)3/ 4 ={ 2 zr(Pktl)} . Substituting this into
k=(m-D)h

(4.8), it follows that

slgi
[ +1' =y [ d4(||RII+hIIQ||)}.

+0((T,)¥*+0Q).
And applying the following elementary inequality

3
o4 Sax+(—3—] , Vx20, Ve>0
4e

for small € to the above equation, we get

Siol
TS, 1<| 1-——222C€" v o). @9
R [ 2d4(||RII+h|IQII)} *o0. @9

Consequently, by the smoothing property of expectation,
E{ E[Tm-ulsmh-l] }= E[T”H_]]
<1-— 2Ny 100,
2d° (IR N+RNILQM)

(4.10)

From this, it is not difficult to obtain the following result:

SUpE[T,, ] <oo. B

m

Now, from the boundedness of fourth-order moment, we
can prove that second-order moment of the state error covari-
ance is also bounded.

Lemma 3: Under assumptions A2 and A3,

. 1
limsup— Y Il P, 17< oo,
n—eo My

almost surely.
Proof: It follows, using the similar argument as in Lemma 1,
that forany ke{[mh,(m+1Dh], mz0

tr(QF) <tr(T12,) + Otr(11,,, ) ) + O(1)
3 74 4 7 —
~1r{gy TopFiHiy R+ Hiy CppHi ) Hp g Fr )

Consequently, we have the result similar to the proof of (4.10)
in Lemma 2 as follows:

S, Q1
EM S <]1-—22"€" 1y o,
(M |3 ( 2d2(IlRII+hIIQII)]M +om
Vmz0, @.11)
where
mh—1 2
M, = z tr(Pk+1)'
k=(m—l)h

Let us denote
gm+1=Mm+l—E[Mm+llSmh—l]’ mz0 (412)

then, {g,,,3,,4-1,m20} is martingale difference sequence,
and satisfies

SUpE[g,, 1> < o

m

by Lemma 2. Now by (4.11) and (4.12) it follows that
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M iy = EIM 1 [ iy 14+ 8t

S[l_ 2&12"Q" }Mm+0(1)+gm+l.
2d°TIRI+RIQN]

Summing up from0to n-1,

M, <Mg-—02lOl "ilM +0(n)+"§g

m O RN+ QN sy ™ ayml
and so

= 282(NRN+RIQN) | M n-l M
— M,"S—L——ﬁ __.9.+_ ng+l+0(l)'_ LY
R0 g0 101 non = n

Thus, by the martingale convergence theorem and the
Kronecker Lemma [3]

. 1 n-1
limsup— Y M, <co,  almostsurely.
n-yoo n m=0
From this, it is easy to obtain the result of Lemma 3. |

Third, we will deal with the exponential boundedness which
is inevitable to Theorem 1.

Lemma 4 [10]: Let {a;} be an adapted sequence of the
gate o -algebra S, a; 21, Vk20. If for some integer
h>0,and constants O<a <1, [<eo,

E[ak ISk_l]SO(ak_1+l, Vi =1 N O<0!<1, O<l<oo R
then there exist constants Y€ (0,1) and M <eo such that

k=m ay

E[ I1 {l——l—ﬂ <My"™ Yn>m, Vm20.

Proof: See [10].

Now, we prove the most critical lemma in this paper.

Lemma 5: Let us now denote X; = x; —X%; , and consider
the following stochastic Lyapunov function V :

V, =5 P'%,, (4.13)
then for any k=20 and by A3,

-
92 Yk
4+etr(q2FkPkF,:)

+O( N o Fy PF N (v W2 +1heo, 12 3 )

1
Vi< Vi -

where e=2010711I.
Proof: Subtracting the second equation of (3.1) from (2.1)
yields the error equation in the following form:

Xert = DX + 4w (4.14)
where
Ji = F — K H i Fy,
Kist = F PeHiy R+ Hy g PcH )™,

Zeat = KV + O
And rewrite (3.2) using K, ,; defined above as
Pey1=(1-82) Fe P Fy + q2J k Py + 2K 4 RK 4y + Q.

.15)

Then, from (4.13), V;,, with (4.14) and (4.15) becomes
Vit = Ui + 20 Pt (i B + 2e41)
= H I P d k% + 20 Pen kB + e Ptz
4.16)
By (4.15) and the matrix inversion formula, we know that
T =T~ Q)R BE, + @ Byt KRy + O i
=[ 4R, +J; (0=~ F B + @oKuiRK + G107 T
=B %1431~ { g1+ 2B * T (-4 Fi PeFy
+ 2Ky 1RK 1 + Q1 020, Pkl/z 15 Pk_l/z
< (@2P) 1=+ @I P i [(1-42)
FyPeFi + oK R +01 17y
(@B (1-[1+ 1 (@ P P FL +Q)Q7 1T}

- 1 Q
<(gP) ™ - (92P) .
241107 Ml g Fy P I

“.17

To derive the third equality in (4.17) the matrix inversion for-
mula has been used. To derive the second inequality,

I Pd iy S @ F P F +Q
and
(A~ g2)F P F{ + 42K nRK iy +0) ' <071

have been used.
Substituting (4.17) into (4.16) we get

1
2+l g0 F P FL I

~ -1 -

Vit —<-XI:|:(72Pk) - (@2P) %%
’ —1 ~ ’ -1

2z P i + Zen Frer1Zien

1 -

1
—4q2 Vi
2+1Q7 Il g, F P FE I

-1
Sqr Vi -

I3 -1 ~ ’ -1
+ 225 1 Pert e + 21 Pev1 2kt
4.18)

Now, if using the elementary inequality 2|xy|< x> +y?*, the
second term of (4.18) yields:

20 2 P % 1S 20 2 PO M P2 T Z
<224 Pl 2 (2107 N go Fy P 1)
~r 2t -1 ~
X e P J i %k
202+ 1107 N gy F, PR M),

<27 Pz (21 Q7 UL gy F B Fy W)

+ 23V
202+ 07 il gy F B L ).

4.19)

In deriving the last term in (4.19), the following relation from
(4.13) and (4.17) has been used:
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~t -1 ~ -1
e B %k £ 43 Ve
By using z;.q =—Ky Vi +@; it follows that

’ -1 , -
GrnrPinZest) G Piizes:)
rope -1/2 2
=z P12 | Pk+{ KiaVisr + @)l
s p-l ' - 2, p-1 2
2 2ot P 2kl Kt B K ) 1 1P + B N 1P ]
SO(IK} i P K )V 12 )+ O 12)
SOV 1% +lley 1%).
(4.20)
Consequently, substituting (4.19)~(4.20) into (4.18) we get
1 -1
=] 42
442197 i g, F, B, F{ I
ol
_ 1 -1
<q;'V - q
44200 Nir(goF P F)
+O{ (e 12 +11vy 4 12 )l g F P FY N}
4.21)
|
Remark 5: Similarly to the proof of (4.10) or (4.11) it can
be shown that

4
Vi =22V Vi

’ —1
+ 2t Pt Zrnt (5 +

Vi

ELS,[S i 1S (1 -

mh—-1
where S, = Y.ir(Peyy) -
k=(m—-1}

—-ﬂm]sm +0(), Ym20,
2d(IRII+AIQI )

Remark 6: It is noted that {a,} in Lemma 4 is the form
of a; =4+e tr(gF PF,), where e=21Q! Il . Therefore,
if Q(n,k) is defined as

1
Qn+lLk)=|q'-—— L2 omk),
(n ) [‘12 d+etr(g, F, P, Fy) n, )

Qk,k)=1, Vnz2k20

(4.22)
then
EQ(n+1))sMy"™ 1, Vn2k>0, 0<y<l, M <.
(4.23)

Finally, with these lemmas we are able to prove the main re-
sult of this paper.

Proof of Theorem 1: From (4.22) and Lemma 5 it follows
that

n~1
V, <Qm0)Vp+d 3 Q0 k)ll guF BN (1, 17 +llay, 1) ]
k=0

So by the Minkowski inequality we have

{E V)P ¥ <(E[Q@,0,

k=0

n-1 4/3 3/4
+0(20(n,k) llg,F, P,FI ( Ilvk+,II2+IIa)kII2))J }

n=1
< 0( YIE {Q(n, k)l g, F B F |
k=0

(Mg P+l 1%) }4/3]3/4)
+[E{Q(n,0)V, Y14,
(4.24)
Now, by the Holder inequality, Lemma 2, Assumption A2,
Assumption A3, and the fact that Q(n,k) <1, we know that
E{Q(n,k) N gy Fy P F WUV 12 +1l @y, 17) Y73
< 23 El{Q(n, k) Y? Il g, F P F{ 13
v 133 1wy 183))
<O(IE{Q(n, b)Y 1{EN ¢, F B F 1))V
AEWVq I +llay W)}y
< OUGPNEQn k) TPHEN v IV + 1w, 1) Y37
<0(g¥) [0, 19 E(@Qn, ))1Y?).

Hence, it follows from (4.23) and (4.24) that

limsupl E{V,, }*/31¥/*

n—oo
n-1
< limsup{c)[ Y [(g2)" [0, 1 [ E(Q(n,k)} )P4 ]
n-—oeo k=0
+{EQ(n,k)V,) 34y
=0(g,[0,17").

Therefore, we have the result as follows:

limsup E[l £, 1*]< limsup E(I Y2 1211 B7V2%, 12)
n—yo0 n—oe

<limsup E(ll 2, 1V,,)

n—eo

<limsup(El P, 1*) V4 (E v, )43} ¥/4

n—yoeo

<0(g,l0,177).

Now, it remains to prove the second result of Theorem 1.
By Lemma 5, it is evident that

& &'V,
s 4+e 1r(g,F,PF))

n-l n-l
=¥ (G, Vi) +0| SN, FBEN {lv,,, F +lle, IP })
k=0 k=0

=0(1)+0( Euqzaaf;n (v, IF +llco, P }).
k=0

So by the Schwarz inequality, Assumption A2 and A3, and
Lemma 3,

1 2=l ‘IV
limsup—z *—m—;
noee Mo 4+ e tr(qukIJka)
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n-l

n-l
SO(Hmsup%lequﬁF;Il {limsup%lZ(llvkﬂllzﬂlay‘llz)}]
k=0 e k=0

n—po

n-1
so[% -h'msupiz‘( nvkﬂnmmnz)]
k=0

<X ‘12(#4)1/2) .
Consequently, by this and Lemma 3 it follows that ( f =1+¢)
nd nl %0
% =3, k [4+ FitrarFi B FO Y1V
& e RO TIT PR
~ 2
< n1/2 "§ Il X “2
0 M@ BB F){4+etrqF R F)}
B y2
<d "i @'V
k0 4+etr(gF B Fy)
=0(n( g)"*(ug)"*).

Therefore, we obtain the result in this paper as follows:

n-1
limsup— Y E 1< 00(g2) (). n

noes MNg=0

V. Conclusions

The PDAF with a modified Riccati equation, which was de-
veloped for solving the uncertainty problem regarding the
origin of a measurement, is known to show better tracking
performance than the standard Kalman filter in a cluttered
environment. In this paper, using the Lyapunov function ap-
proach, the stability of the PDAF with a modified Riccati
equation was analytically proved. It was shown that if the
measurement sequence belongs to a gate o -algebra, the in-
formation reduction factor is chosen adequately takes the
value between O and 1, and the process and observation noises
are bounded, then the state estimation error is exponentially
bounded and the bounds are determined by the bounds of the
process and observation noises.

It is expected that the analytic methods developed in this
paper can be extended to the stability and performance analy-
ses of the PDAF with the stochastic Riccati equation and the
PDAF with interacting multiple models.
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